

Burlington (Echo Lake) Dam

Spillway Improvement and Dam Removal Feasibility Study

Prepared for:

City of Burlington Burlington, Wisconsin

November 5, 2021

www.AyresAssociates.com

Burlington (Echo Lake) Dam

Spillway Improvement and Dam Removal Feasibility Study

3376 Packerland Drive Ashwaubenon, WI 54115 920.498.1200 www.AyresAssociates.com

Ayres Project No. 26-1244.00 File: i:\26\burlington city of dam\26-1244.00 echo lake dam spillway feasibility study\feasibility study report\burlington dam feasibility study.docx

Contents

Page No.

Executive Summary	1
Situation	1
Tasks	1
Actions	1
Results	2
Basis of Design	4
Option 1: Three 16-ft x 6-ft Tainter Gates	7
Option 2: Three 16-ft x 6-ft Crest Gates	10
Option 3: Three 16-ft x 6-ft Slide Gates	13
Option 4: Dam Removal with Enhancements	15
Conclusions	18
Study Limitations	19

List of Appendices

Appendix A Hydraulic Report Appendix B Conceptual Drawings Appendix C Cost Estimates Appendix D Pre-Dredging Study

List of Figures

Page No.

Figure 1. July 2017 flood validation results	4
Figure 2. Echo Lake Dam's existing tainter gate viewed from downstream operator bridge	7
Figure 3. Bloomer Mill Dam viewed from downstream. Three tainter gates with electrical hoists sh	iown
on the left side of the photograph	7
Figure 4. Typical tainter gate configuration (Source: US Army Corps of Engineers Engineer Manual	(EM)
1110-2-2702, Design of Spillway Tainter Gates, January 1, 2000)	8
Figure 5. Crest gate at Bridge Street Dam in Grafton, Wisconsin viewed from downstream	.10
Figure 6. Crest gate at Bridge Street Dam in Grafton, Wisconsin viewed from opposite bank. Enclose	sure
for hydraulic controls identified with arrow.	.11
Figure 7. Slide gates at Moose Lake Dam in Hayward, Wisconsin	.13

List of Tables

Page No.

Table 1. Estimated total project costs for alternatives considered	3
Table 2. Total Project Cost Estimate for Tainter Gate Option	9
Table 3. Total Project Cost Estimate for Crest Gate Option	12
Table 4. Total Project Cost Estimate for Slide Gate Option	14
Table 4. Total Project Cost Estimate for Dam Removal Option with Enhancements	16

Executive Summary

Situation

Burlington (Echo Lake) Dam is located on the White River in Burlington, Wisconsin. The dam is located about 1,500 ft upstream of the White River's confluence with the Fox River. As reported by the Wisconsin Department of Natural Resources (WDNR), the dam is primarily used for recreational purposes and creates an upstream storage of approximately 130 acre-ft at normal pool. (One acre-foot is equal to the volume of water created by 1 ft of water covering an area of 1 acre.) Normal pool is maintained just above the overflow spillway crest elevation of 761.93 feet NAVD 88. From north to south, project features include a 120-foot earthen embankment with a minimum crest elevation of 764.42 ft NAVD 88, one 16-foot-wide radial (tainter) gate spillway, and a 246-foot-long uncontrolled ogee-crest spillway. Per WDNR records, the discharge capacity of the dam is 5,516 cfs.

A dam failure analysis (DFA) was completed for Echo Lake Dam in 2015 and later approved by the WDNR. The DFA assigned a hazard rating of "Significant" to the dam. With this hazard rating, per Table I in Wisconsin State Statutes Chapter NR 333.07(1), the dam's spillways must be capable of passing the 500-year flood without overtopping the embankment. (The 500-yr flood is a flood that has a 1-in-500 chance of being exceeded in magnitude during a year.) If meeting this requirement is not possible, Chapter NR 333.07(2)(a) states that "all dams which will be submerged by flows less than the minimum hydraulic capacity specified in Table I shall be designed to pass the flow of the river at submergence."

The 2015 DFA concluded that, as currently configured, Echo Lake Dam does not meet NR 333 spillway capacity requirements. Therefore, the WDNR issued a directive for the City to increase spillway capacity to achieve compliance with NR 333. The current due date to meet this directive is July 8, 2025.

Tasks

Ayres was retained by the City of Burlington to evaluate potential spillway upgrades for Echo Lake Dam to increase its capacity as required by the WDNR's directive. For each spillway upgrade alternative, our evaluations include conceptual drawings, a description of benefits and drawbacks, and an engineer's opinion of probable cost. In addition to spillway modification alternative, we were also tasked with evaluating a dam removal option.

Actions

To complete the feasibility study, we:

- 1. Developed a 2-dimensional (2-D) hydraulic model of Echo Lake, the existing dam, and the White and Fox rivers downstream.
- 2. Validated the 2-D hydraulic model by simulating the July 2017 flood-of-record event and simulated various additional hypothetical flood events (e.g., the 10-yr, 100-yr, and 500-yr).
- 3. Modified the existing dam's geometry within the 2-D hydraulic model to represent alternatives capable of meeting the WDNR's spillway capacity requirements.
- 4. Coordinated with the WDNR to obtain general buyoff of the conceptual alternatives analyzed. (Note: Whichever alternative the City chooses to implement will be subject to a complete WDNR permit application review process. The WDNR's general buyoff of a conceptual plan does not negate the need for this review process.)

- 5. Developed concept-level drawings of the three dam modification alternatives, as well as a dam removal scenario. For the dam removal scenario, we also included recreational enhancements for the City's consideration.
- 6. Compiled and described the pros and cons associated with each of the three modification alternatives and the dam removal scenario.
- 7. Estimated total project costs—including construction and engineering services (design/permitting, bidding, and construction administration)—for each of the spillway modification alternatives and the dam removal scenario.
- 8. Provided recommendations to assist the City with determining the next steps and described available funding mechanisms.

Results

During our 2-D hydraulic modeling effort, we concluded that there is no feasible way to increase Echo Lake Dam's spillway capacity such that the 500-yr flood can be passed without overtopping the dam's north embankment and the railroad grade to the south. Instead, through additional hydraulic modeling and coordination with the WDNR, we determined that the dam could be modified to pass a smaller submergence flood, as allowed by NR 333.07(2)(a). To accomplish this, the dam's northern embankment would need to be raised to an elevation of 766 ft NAVD 88 (about 1 to 2 feet higher than existing) using a concrete floodwall and earthen berm combination. In addition, the existing steel tainter gate, operator deck, and the far northern portion of the overflow spillway would be removed and replaced with three new moveable gates—each 16 ft wide and 6 ft high. Finally, the downstream retaining wall and sidewalk on the north river bank immediately below the dam would be removed and rebuilt, as recent dam inspections have indicated ongoing undermining and deterioration of these structures.

For the three proposed 16-ft x 6-ft gates, we analyzed three options. Each of the three options includes the proposed flood wall/earthen berm and reconstructed downstream retaining wall and sidewalk. The options include:

- Option 1: Three 16-ft wide x 6-ft high tainter gates with electrically controlled hoists.
- Option 2: Three 16-ft wide x 6-ft high crest gates with hydraulic controls.
- Option 3: Three 16-ft wide x 6-ft high slide gates with electrically controlled actuators.

For the dam removal option (hereby referred to as Option 4), we included not only a removal of the existing dam structure, but also river bank stabilization, ecological restoration, and various recreational and municipal enhancements. These project add-ons are intended to provide the City with ideas for what is possible at the site should the dam be removed and the estimated costs associated with these possibilities. Should the dam removal be pursued, the City may scale the project scope accordingly, up or down, based on community input, budget, and funding opportunities.

Estimated total project costs for all four alternatives are provided in Table 1. For each alternative, costs include engineering services (design, bidding, and construction administration), construction, permitting, and a 30-percent contingency.

Alternative	Estimated Total Project Cost
Option 1: Three 16-ft x 6-ft tainter gates	\$2,439,840
Option 2: Three 16-ft x 6-ft crest gates	\$2,646,150
Option 3: Three 16-ft x 6-ft slide gates	\$1,548,820
Option 4: Dam removal with enhancements ¹	\$6,061,463

Table 1. Estimated total project costs for alternatives considered

1. Cost includes significant rehabilitation measures and recreational enhancements. The total estimated cost of a dam removal with basic rehabilitation is approximately \$1.5 - \$2.0 million.

Of the three gate options analyzed, Option 3 (slide gates) is the lowest cost alternative and affords relatively minor operation and maintenance requirements. Option 2 (crest gates) is the most expensive alternative but provides the best debris and water level control.

We estimate the cost of a complete dam removal accompanied by basic stream and wetland rehabilitation measures to be approximately \$1.5 to \$2.0 million. If significant ecological, municipal, and recreational enhancements are included in the project, the dam removal option cost may exceed \$6 million.

Basis of Design

To commence this feasibility study, we developed a 2-D hydraulic model of the study area. The model's geometry extends from the White River near the upstream boundary of Echo Lake and the Fox River about 0.7 mi upstream of the confluence with the White River to the Fox River about 1 mi downstream of Echo Lake Dam. We developed the model using HEC-RAS version 6.1.0.

To confirm that our 2-D hydraulic model could produce reasonable results, we first simulated the July 2017 flood-of-record and validated our results by comparing the computed inundated area against surveyed high water marks measured during the event. A comparison of our simulated inundation boundary to the surveyed high water marks is provided in Figure 1. As can be seen, the outer extent of the modeled flood boundary compares well with the surveyed high water mark points.

Figure 1. July 2017 flood validation results

After confirming that our 2-D hydraulic model could produce accurate results for a large historical flood event, we simulated 50-, 100-, and 500-yr floods to estimate the flooding that would be expected for large hypothetical flood events with the existing dam in place. (A N-yr flood is a flood with a 1-in-N chance of being exceeded in magnitude during a year.) The 50-, 100-, and 500-yr flow rates used for our analysis were taken from the Racine County Flood Insurance Study (FIS) for the White River and the Upper (Illinois) Fox River Hydrologic Model for the Fox River. Our simulations indicated that the dam's north embankment would overtop by a maximum of 2.5, 1.4, and 1.0 ft during the 500-, 100-, and 50-yr floods, respectively. These simulations confirmed that the existing dam is not capable of passing the 500-yr flood as required by NR 333.07(1).

After simulating the hypothetical floods for the existing condition, we simulated a condition where the entire 246-ft fixed-crest spillway is replaced with a moveable crest spillway such as an inflatable rubber dam or a hinged crest gate. Both gate scenarios can be operated to behave as though no water control structure is in place: For the case of the rubber dam, by completely deflating it, and for the case of the hinged crest gate, by completely lowering it. We chose to simulate an alternative such as this to illustrate the maximum possible spillway capacity achievable with retrofits to Echo Lake Dam. After simulating the 500-yr flood with the 246-ft moveable crest spillway in place (in a completely lowered condition), we determined that the north embankment would still need to be raised by approximately 2 to 2.5 ft to prevent overtopping. The south bank adjacent to the railroad grade would still overtop and bypass the dam under this scenario. From these results, we concluded that there are no feasible dam improvement alternatives that could be implemented to achieve the 500-yr spillway capacity required by NR 333.07(1).

Next, we sought to determine if we could achieve spillway compliance with NR 333.07(2)(a). For this, we needed to determine if the existing dam configuration could feasibly be modified to pass the flood at submergence instead of the 500-yr flood. According to NR 333.03(25), a dam is submerged when the "difference between the water surface elevations upstream and downstream from a dam is one foot or less." Conceptually, a submerged dam can be thought of as a structure that is no longer controlling the flow of water through it.

To determine if modifying the existing dam to pass the flow at submergence was feasible, we needed to achieve the following design goals:

- Pass the submergence flood without overtopping any portion of the dam not designed for overtopping.
- Pass the 100-yr flood without increasing the 100-yr flood profile.
- Prevent water from flowing over the north embankment, which provides access for operation of gates and mitigates against head cutting occurring adjacent to the spillway's north abutment.

By modifying the dam in our 2-D hydraulic model, we were able to meet the three objectives listed above by replacing a portion of the existing overflow spillway with two additional moveable gates, each 16 ft wide and 6 ft high, the approximate dimensions of the dam's existing tainter gate. This would bring the total number of 16-ft x 6-ft gates on the dam to three. Beyond adding these gates, raising the dam's north embankment to an elevation of 766 ft NAVD 88 is required, which represents an increase in the existing grade of about 1 to 2 feet. With this alternative, we determined that a flow of 7,600 cfs submerges the dam, as the computed upstream and downstream water surface elevations for this scenario differed by 0.95 ft, which is less than the WDNR's 1-ft threshold.

With the improvements described above, we then increased the flow until we overtopped the raised north embankment. Doing so, we found that spillway capacity just prior to overtopping the raised left embankment is 8,570 cfs, which is just under the peak flow rate for the 200-yr flood. This represents a significant improvement over the dam's existing spillway capacity of 5,516 cfs. The improvements also allow for safe operator access to the dam during larger flood events than currently possible, as our models show the existing embankment overtops during floods smaller than the 50-yr. Similarly, the proposed improvements mitigate against the risk of erosion occurring as the embankment overtops during smaller flood events.

We presented our models, results, and findings to the WDNR to obtain general buyoff of the design direction in which we were headed. The WDNR confirmed that the conceptual design described above is acceptable, with the caveat that a more detailed analysis and a more thorough review would be required as the dam repair permit application review process. This caveat was expected given that we are currently only in the planning phase of the project. Therefore, we moved forward with analyzing construction alternatives containing the following elements:

- Three new moveable 16-ft wide x 6-ft high gates to replace the dam's existing tainter gate and the northern portion of the dam's existing fixed-crest overflow spillway. Replacing the existing tainter gate is necessary because it is significantly deteriorated, leaks, and cannot currently be raised out of the water to the extent needed to pass the submergence flood.
- An increased north embankment overtopping elevation of 766 ft NAVD 88.
- A new concrete retaining wall and sidewalk on the north riverbank downstream of the dam, as these structures are currently undermining and deteriorating.

Complete documentation of our hydraulic analyses and findings can be found in our *Echo Lake Dam Spillway Upgrade Feasibility Study: Design Criteria Determination*, dated October 7, 2021. This document is included here as Appendix A.

Option 1: Three 16-ft x 6-ft Tainter Gates

For our first option, we investigated the feasibility of accomplishing the needed modification using three 16-ft wide x 6-ft high tainter gates. Echo Lake Dam's existing moveable gate is a tainter gate, so studying the feasibility of continuing to use tainter gates to control flows through the dam was a logical choice. A photo of the dam's existing tainter gate is provided in Figure 2. In Figure 3, we provide a photo of Bloomer Mill Dam, an Ayres-designed structure in Bloomer, Wisconsin that includes three tainter gates with electrical hoist systems. A drawing of a typical tainter gate configuration is provided in Figure 4.

Figure 2. Echo Lake Dam's existing tainter gate viewed from downstream operator bridge

Figure 3. Bloomer Mill Dam viewed from downstream. Three tainter gates with electrical hoists shown on the left side of the photograph.

The tainter gate configuration shown in Figure 3 is conceptually similar to what could be implemented at Echo Lake Dam. Tainter gates pass flow through a bottom draw, so as the gates are hoisted to an increasing distance above the sill, flow through the gates also increases. Echo Lake Dam's existing tainter gate is raised through a hand-operated crank, which rotates a shaft and winds a wire rope around a spool attached to the shaft. As the crank is turned, the wire rope is wound around the spool and lifts the tainter gate into the air. The gate is lowered by reversing the direction of cranking. Gates are raised and lowered at Bloomer Mill Dam in a similar manner, but cranking is accomplished using an electrically controlled gearbox (with a hand-operated backup). For the replacement gates at Echo Lake Dam, we recommend an electrically controlled hoist system, as well, because opening the three gates by hand, while feasible, is likely to be too slow of a process to rely upon during an emergency. As a backup, the gates would still be designed to be operable by hand in case electrical power is lost. Tainter gates can be held in variable open positions between fully open and fully closed.

Figure 4. Typical tainter gate configuration (Source: US Army Corps of Engineers Engineer Manual (EM) 1110-2-2702, Design of Spillway Tainter Gates, January 1, 2000)

Advantages of tainter gates include:

• Hydraulic efficiency. The curved surface and bottom draw capabilities of a tainter gate take advantage of the available hydraulic head to maximize release efficiency with respect to gate opening distance.

- The bottom-draw capability of a tainter gate may assist with flushing sediment through the lake and dam.
- The radial shape transfers hydrostatic loadings through the trunnion, requiring a lower hoist capacity than is often required for other similarly sized gate types.
- Comparatively fast opening and closing times.

Disadvantages of tainter gates include:

- Longer piers and foundations, in the direction of flow, are needed to accommodate the location of the gate's trunnion. This requires a larger supporting structure and more concrete than that which is needed by other gate types.
- The gate's frame may impede the flow of water. This is especially true at Echo Lake Dam, where there are high tailwater conditions and gates need to be completely lifted out of the water to pass the submergence flow.
- The bottom-draw characteristics of a tainter gate can make them more susceptible to collecting debris upstream.
- Ice formation during cold weather may make these gates difficult to open. Heated side seals and sills are sometimes employed if a dam requires winter operation. Upstream water circulation or aerators can also be installed during winter months.

Conceptual drawings for the tainter gate option at Echo Lake Dam are provided in Appendix B. As can be seen in the drawings, the downstream retaining wall and sidewalk and the floodwall/berm to the north of the dam are also included. Access would be accomplished using a steel walkway mounted on top of the piers that separate the gate bays.

For Echo Lake Dam, we estimate the cost to construct a new gated spillway with three electricallycontrolled 16-ft x 6-ft tainter gates to be approximately \$2.4 million. This cost includes the new downstream retaining wall and sidewalk and the embankment floodwall and berm that are also required for this option. Engineering services (design, bidding, and construction administration), as well as a 30-percent contingency in construction costs are also included in that total estimate. A breakdown of this construction cost is provided in Table 2, and a more complete itemization of costs is included in Appendix C.

Item	Estimated Cost
Construction (Material, Labor, Equipment, Overhead, and Profit)	\$1,632,000
Contingency (30%)	\$489,600
Total Construction Cost	\$2,121,600
Engineering Services (Estimated at 15% of Total Construction Cost)	\$318,240
Total Project Cost	\$2,439,840

Table 2. Total Project Cost Estimate for Tainter Gate Option

Option 2: Three 16-ft x 6-ft Crest Gates

For our second option, we investigated the feasibility of accomplishing the needed modification using three 16-ft wide x 6-ft high crest gates. Unlike tainter gates, which pass flow through a bottom opening, crest gates pass flow over the top. In Figure 5, we show a crest gate installed at Bridge Street Dam in Grafton, Wisconsin. The crest gate shown was added to the dam as part of an Ayres-led design project and was built adjacent to an existing overflow spillway, like would be the case at Echo Lake Dam. The Bridge Street Dam crest gate is of comparable size to each of the three crest gates needed at Echo Lake Dam.

Crest gates open by rotating downward toward that gate's sill, and they close by rotating upward away from the gate's sill. Crest gates can be held in variable open positions between fully open and fully closed, providing excellent water level control. At Echo Lake Dam, each of the three crest gates would be operated using hydraulic controls, as is also the case in Grafton. As can be seen in Figure 5, a hydraulic cylinder is mounted on the spillway's land-side abutment. This hydraulic cylinder controls the opening and closing of the gate. An electrically-powered hydraulic pump is protected in a nearby locked enclosure, as identified in Figure 6. The dam is operated using the controls that are inside this enclosure.

Figure 5. Crest gate at Bridge Street Dam in Grafton, Wisconsin viewed from downstream

Advantages of crest gates include the following:

- Intuitive and variable water level control. For example, if the operator desires to lower the upstream pool level by one inch, lowering the gate crest by one inch will likely come close to accomplishing this task. Relationships between gate opening and upstream water level are more complicated with bottom opening gates.
- Crest gates generally pass ice and floating debris better than bottom-opening gates.
- Crest gates open (rotate downward) by releasing the hydraulic pressure in the cylinder, thus allowing upstream water pressure to push the gate down. During emergencies, this is advantageous

because the gate can be quickly opened even without access to electrical power. If crest gates need to be closed (raised) during a time when electrical power is not available, the hydraulics are operable using a backup handpump.

Disadvantages of crest gates include the following:

- Crest gates are generally more expensive than other gate types.
- Top-draw releases through a crest gate may not provide the sediment-flushing capabilities of bottom-draw gates.
- Ice may form and accumulate at the downstream base of the crest gate, which may prevent the gate from fully opening during cold-period operations. If the upstream water pressure is not sufficient to break the ice and open the gate, ice buildup is often mitigated against using heated sills and/or side seals, and ice buildup can also be removed mechanically or with steam/hot water.

Figure 6. Crest gate at Bridge Street Dam in Grafton, Wisconsin viewed from opposite bank. Enclosure for hydraulic controls identified with arrow.

Conceptual drawings for the crest gate option at Echo Lake Dam are provided in Appendix B. As can be seen in the drawings, the downstream retaining wall and sidewalk and the floodwall/berm to the north of the dam are also included. Access would be accomplished using a steel walkway mounted on top of the piers that separate the gate bays.

For Echo Lake Dam, we estimate the cost to construct a new gated spillway with three hydraulicallycontrolled 16-ft x 6-ft crest gates to be approximately \$2.6 million. This cost includes the new downstream retaining wall and sidewalk and the embankment floodwall and berm that are also required for this option. Engineering services (design, bidding, and construction administration), as well as a 30-percent contingency in construction costs are also included in that total estimate. A breakdown of this construction cost is provided in Table 3, and a more complete itemization of costs is included in Appendix C.

Table 3. Total Project Cost Estimate for Crest Gate Option

Item	Estimated Cost
Construction (Material, Labor, Equipment, Overhead, and Profit)	\$1,770,000
Contingency (30%)	\$531,000
Total Construction Cost	\$2,301,000
Engineering Services (Estimated at 15% of Total Construction Cost)	\$345,150
Total Project Cost	\$2,646,150

Option 3: Three 16-ft x 6-ft Slide Gates

For our third option, we investigated the feasibility of accomplishing the needed modification using three 16-ft wide x 6-ft high vertically rising slide gates. Ayres designed a spillway with three vertically rising slide gates at Moose Lake Dam in Hayward, Wisconsin, as shown in Figure 7. The gates shown in the figure are each 12-ft wide and 11.5-ft high, so they are 4 ft narrower and 5.5 ft higher than the gates that would be installed at Echo Lake Dam. Nonetheless, the configuration is generally the same. Slide gates release flow by lifting vertically above the sill, which allows water to pass through underneath. Slide gates can also be sized and designed to allow flow over the top under normal-pool conditions when closed. At Echo Lake Dam, the gates are large enough that we recommend electrically-controlled actuators be used for operation. The actuators are also configured to be operable using a handwheel or battery-powered drill should primary electrical power be lost during an emergency.

Figure 7. Slide gates at Moose Lake Dam in Hayward, Wisconsin

Advantages of slide gates include the following:

- Slides gates have the lowest cost of the options analyzed for this study.
- Slide gates have lower operation and maintenance requirements than the other options analyzed.
- Bottom-draw capabilities may help with flushing sediment from the lake.

Disadvantages of slide gates include the following:

- Significant gear ratios may be required to lift these gates. This may make operation more time consuming than what is required for the other gate options analyzed, particularly if manual opening using a handwheel is required.
- Upstream water level control using a bottom-draw gate is not as straightforward as water level control using an overflow gate.
- Bottom draw gates are more likely to catch debris.

• Ice formation and accumulation may make these gates difficult to open during cold-weather operations. Sizing the gate so that it flows over the top when closed, under normal pool conditions, may help to prevent ice formation. Some dam owners also circulate water upstream of the gates or use aerators to mitigate against ice formation.

Conceptual drawings for the slide gate option at Echo Lake Dam are provided in Appendix B. As can be seen in the drawings, the downstream retaining wall and sidewalk and the floodwall/berm to the north of the dam are also included. Access would be accomplished using a steel walkway mounted on top of the piers that separate the gate bays, as is proposed for the other two gate options analyzed.

For Echo Lake Dam, we estimate the cost to construct a new gated spillway with three electricallycontrolled 16-ft x 6-ft slide gates to be approximately \$1.5 million. This cost includes the new downstream retaining wall and sidewalk and the embankment floodwall and berm that are also required for this option. Engineering services (design, bidding, and construction administration), as well as a 30-percent contingency in construction costs are also included in that total estimate. A breakdown of this construction cost is provided in Table 4, and a more complete itemization of costs is included in Appendix C.

Item	Estimated Cost
Construction (Material, Labor, Equipment, Overhead, and Profit)	\$1,036,000
Contingency (30%)	\$310,800
Total Construction Cost	\$1,346,800
Engineering Services (Estimated at 15% of Total Construction Cost)	\$202,020
Total Project Cost	\$1,548,820

Table 4. Total Project Cost Estimate for Slide Gate Option

Option 4: Dam Removal with Enhancements

For Option 4, we investigated the feasibility of removing Echo Lake Dam in lieu of modifying it to meet WDNR's spillway capacity requirements. We developed a conceptual plan for dam removal that includes some ecological, municipal, and recreational enhancements to the site. Major project components, as included in our conceptual plan, include:

- Removal of the entire existing concrete dam structure.
- Streambank stabilization using riprap.
- Wetland space.
- Stormwater retention pond with surrounding berm and pedestrian path.
- Pedestrian bridge over the White River leading to enhanced wetland area.
- Scenic boardwalk through the enhanced wetland area.
- Fishing ponds and docks.
- Boardwalk and kayak launch upstream at Wagner Park.

A drawing illustrating this plan is included in Appendix B. Our removal plan includes extensive enhancements because public commentary during City Council meetings attended by Ayres generally indicated that, if a dam removal is to be pursued, the public is likely not interested in simply turning the formerly impounded area into a large, unkept wetland space. In other words, some level of enhancement is expected. Our plan includes many enhancements to give the City ideas for possibilities and for what various project components can be expected to cost should they be implemented as part of the project. We encourage these components to be thought of as "a la carte" items that can be added or removed from the conceptual plan, as desired.

A summarized cost breakdown for the entire plan, as presented, is provided in Table 5. For this breakdown we have separated the costs associated with basic dam removal and rehabilitation from the costs associated with the enhancements. If dam removal and rehabilitation is pursued without the enhancements, we estimate total costs to be in the range of \$1.5 to \$2 million. The total estimated cost if removal and rehabilitation are coupled with all the enhancements included in our plan is about \$6.1 million. Our estimated costs include engineering services (design, bidding, and construction administration), as well as a 30-percent contingency in construction costs. A detailed cost breakdown, which shows the individual cost of the various enhancements, is provided in Appendix C.

Table 5. Total Project Cost Estimate for Dam Removal Option with Enhancements

Item	Estimated Cost
Construction (Removal and Rehabilitation)	\$1,171,500
Construction (Enhancements)	\$2,882,990
Contingency (30%)	\$1,216,347
Total Construction Cost	\$5,270,837
Engineering Services (Estimated at 15% of Total Construction Cost)	\$790,626
Total Project Cost	\$6,061,463

Following are the steps required in the State of Wisconsin to pursue removal of a dam (from the WDNR *Dam Abandonment and Removal Fact Sheet*):

- 1. Prepare conceptual drawings, a narrative description of the proposed dam removal project, and contact the WDNR's Regional Water Management Engineer to discuss the project and confirm the requirements for pursuing the dam removal.
- 2. Prepare detailed drawings and specifications (construction-ready level of detail), prepared and stamped by a professional engineer licensed in the State of Wisconsin, and submit to the WDNR a Chapter 31 permit application to remove the dam. Along with the drawings and specifications, the permit application will require a detailed narrative description of the project, including the:
 - Purpose of the project.
 - Drawdown procedure to be used prior to dismantling the dam.
 - Parts of the dam to be removed.
 - Method by which the dam is to be removed.
 - Disposal site for the dam materials.
 - Stream channel and flowage bed restoration and protection needs.

To support the permit application, the dam owner will also need to include a:

- Hydrologic and hydraulic report. For dam removals, these reports usually must include an estimate of the 100-yr flood and a computed profile of the 100-yr flood, both upstream and downstream, without the dam in place.
- Sediment management plan. This plan that explains existing sediment conditions, how sediment transport will be managed during dam removal, and how the bed will be stabilized after removal. Sediment sampling and testing is usually required prior to a dam removal. For Echo Lake Dam, this has already been accomplished as part of a 2021 pre-dredging study completed by Ayres (see Appendix D).
- 3. After the dam owner submits the Chapter 31 permit application, the owner must prepare and publish a notice to inform the public of the proposed dam removal. Public hearings are not required,

but state law requires that one must be held if requested in response to the public notice. If there are any objections to the dam removal, state law requires a 120-day waiting period. During this waiting period, the dam owner should be prepared to defend and justify the request for abandonment.

4. After the Chapter 31 permit application has been submitted, public notice and hearing requirements have been met, and the owner has responded to WDNR review comments and requests for more information, a Chapter 31 permit to remove the dam may be issued.

In addition to the WDNR's Chapter 31 permitting requirements described above, the Federal Emergency Management Agency (FEMA) will also have requirements that need to be addressed before removal can take place because Echo Lake Dam is within a Special Flood Hazard Area (SFHA)—specifically Zone AE—which will be inundated by the 100-yr flood. Before removal, therefore, FEMA requires that the owner obtain a permit for floodplain development. As part of the permit application process, the owner will need to apply for a Conditional Letter of Map Revision (CLOMR). After the permit for floodplain development is approved and the CLOMR is issued by FEMA, dam removal can take place (presuming the WDNR's Chapter 31 permit to remove the dam has also been issued). Following construction, the owner will need to apply for FEMA to issue a Letter of Map Revision (LOMR). It is important for the owner to keep these FEMA requirements in mind because they are in addition to the WDNR's Chapter 31 requirements and have their own associated timelines and costs.

Conclusions

If the City decides to keep Echo Lake Dam in place, options 1 through 3 will all meet the WDNR's directive to increase spillway capacity. All three options use gate types that are commonly employed at similar dams, and the raised embankment and reconstructed downstream retaining wall will improve safety and access to the dam.

If cost is the City's primary concern, then Option 3 (slide gates) will likely prove to be the lowest-cost alternative. If ease of operation and superior water level control are the City's primary concern, then Option 2 (crest gates) is likely the best alternative.

In any case, design and construction of the chosen alternative are eligible for partial reimbursement under the WDNR's Municipal Dam Grant program. Grant funding under this program is competitive, and applications for the current cycle are due on March 4, 2022. If awarded, the grant covers:

- 50 percent of the first \$1 million of eligible project costs, and
- 25 percent of the next \$2 million of eligible project costs.

Based on the grant funding cost share described above, the maximum funding for a project is \$1 million. We cannot predict with certainty if Echo Lake Dam is likely to receive funding under this program. However, as a Significant-hazard dam in need of additional spillway capacity, the dam repair project should score well on the application.

Aside from the dam modifications described above, the City is also considering dredging Echo Lake should they elect to keep the dam in place. Ayres completed a pre-dredging study for Echo Lake in June 2021, a copy of which is included as Appendix D of this report. Based on our findings, the current estimated cost to dredge Echo Lake is about \$2.5 million. This cost estimate, however, can be scaled up or down should the City decide to dredge more or less than the proposed 115,000 cubic yards described in the study report. The cost of dredging is separate from and additional to the dam repair costs estimated for this feasibility study, and dredging costs would not be eligible for reimbursement under the Municipal Dam Grant program.

If the City decides to remove Echo Lake Dam, the total costs associated with the removal and rehabilitation are estimated to be approximately \$1.5 to \$2 million (this does not include costs for optional enhancements). Under the WDNR's Municipal Dam Grant program, grant awards for a dam removal project cover 100 percent of the first \$1 million of eligible project costs. Extra points are awarded on the Municipal Dam Grant application for dam removal projects, so while we cannot predict with certainty whether the grant would be awarded for removing Echo Lake Dam, we know from experience that dam removal projects score well on the application and are usually grant award recipients. Costs for municipal and recreational enhancements following dam removal are not eligible for reimbursement under the Municipal Dam Grant program. However, various other state and federal funding programs may be available to offset some of the costs of restoring natural habitat and creating recreational space after the dam is removed.

Should the City decide to move forward with a dam removal, we recommend a planning study and outreach program be initiated to solicit input from the community on the overall vision for the project, to determine a budget, and to identify additional sources of funding based on what the community decides.

Study Limitations

The goal of this feasibility study is to provide the City of Burlington with information that can be used to assist with developing a plan to repair or remove Echo Lake Dam. Technical analyses completed for this study were of an appropriate level of detail for the planning phase of a project, but they not of a design level of detail. Therefore, the alternatives presented may be subject to modification and refinement during the design phase. Furthermore, the cost estimates provided here are engineers' opinions of probable total project costs. We based these cost estimates on published construction data, our own experience with similar local projects, and budgetary cost estimates provided to us by a gate fabricator and vendors. Estimates for engineering fees, which include design and permitting, bidding, and construction administration, are generally 15 percent of the total construction costs. We believe our cost estimates to be conservative and appropriate for budgetary planning purposes. But we do not guarantee that actual project costs will fall within the estimates provided here.

Appendix A Hydraulic Report

Echo Lake Dam Spillway Upgrade Feasibility Study: Design Criteria Determination

City of Burlington

Prepared for:

City of Burlington Burlington, WI

October 7, 2021

www.AyresAssociates.com

Echo Lake Dam Spillway Upgrade Feasibility Study: Design Criteria Determination

City of Burlington Burlington, WI

I hereby certify that I am a licensed Professional Engineer in the state of Wisconsin, and this report was prepared by me or under my supervision:

3433 Oakwood Hills Parkway Eau Claire, WI 54701-7698 715.834.3161 • Fax: 715.831.7500 www.AyresAssociates.com

Ayres Project No. 26-1244.00

Contents

Page No.

Introduction 1
Background 1
Data Collection 1
Hydrology1
Model Development
Geometry
Boundary Conditions 4
Manning's <i>n</i> – Surface Roughness
Model Validation
Alternatives Evaluated6
Results
Do Nothing (Existing Conditions)
Dam Improvements
Moveable Crest Spillway 10
Addition of Radial Gates11
Dam Removal14
Conclusions

List of Appendices

Appendix A Bathymetric Survey

Appendix B Profile Plots – 50-year

Appendix C Profile Plots – 100-year

Appendix D Profile Plots – 500-year

List of Figures

Page No.

Figure 1. Project area and HEC-RAS model extents	3
Figure 2. July 2017 Flood Event Modeled Inundation	6
Figure 3. 50-yr Flood Inundation, Existing	8
Figure 4. 100-yr Flood Inundation, Existing	9

Figure 5. 500-yr Flood Inundation, Existing	9
Figure 6. 500-year Flood Inundation, 246' Wide Adjustable-Crest Spillway	10
Figure 7. Submergence Water Surface Profile	11
Figure 8. 50-yr Flood Inundation, Add Radial Gates	12
Figure 9. 100-yr Flood Inundation, Add Radial Gates	13
Figure 10. 500-yr Flood Inundation, Add Radial Gates	13
Figure 11. 50-yr Flood Inundation, Dam Removed	14
Figure 12. 100-yr Flood Inundation, Dam Removed	15
Figure 13. 500-yr Flood Inundation, Dam Removed	15

List of Tables

Page No.

Table 1. Modeled Flows	2
Table 2. Manning's <i>n</i> Values	5
Table 3. Upstream Elevation Change Due to Dam Removal	14

Introduction

Ayres Associates was retained by the City of Burlington to evaluate potential spillway upgrades for Echo Lake (also called Burlington) Dam. The hazard classification for the dam is Significant, as determined from results of a dam failure analysis (DFA) completed in 2015. The same study found that, as currently configured, the dam does not pass the 500-year flood without overtopping the dam's embankment. The Wisconsin Department of Natural Resources (WDNR) requires that dams with a Significant hazard classification must pass the 500-year (0.2 percent-annual-chance) flood without overtopping. As such, upgrades to the spillway and dam to increase capacity are necessary to meet this requirement.

Background

Echo Lake Dam is located on the White River about 1,500 ft upstream of the confluence with the Fox River. As reported by WDNR, the dam is used for recreation purposes and has a storage of 130 acre-ft at normal pool. Normal pool is maintained just above the spillway crest elevation of 761.93 feet NAVD 88. From left to right, project features include a 120-foot-long left earthen embankment with a minimum crest elevation of 764.42 ft NAVD 88, one 16-foot-wide radial gate spillway, and a 246-foot-long uncontrolled ogee-crest spillway. Per WDNR records, the discharge capacity of the dam is 5,516 cfs.

Data Collection

In April 2021, Ayres Associates completed a bathymetric survey of Echo Lake and a topographical survey of key project features. A plan view of the bathymetric survey contours is provided in Appendix A.

2017 LiDAR topographic data were obtained from the Wisconsin Elevation and LiDAR data inventory hosted by the Wisconsin State Cartographer's Office (SCO). We used the LiDAR data to define modeled topography outside of the lake's surveyed extent. The WDNR-approved 2015 HEC-RAS model for the Echo Lake Dam DFA was provided by the City of Burlington, and a 2016 HEC-RAS model for Rochester Dam on the Fox River was obtained from WDNR's Surface Water Data Viewer. Downstream channel bathymetry and bridge geometries were sourced from these two models.

Peak flood-flow frequency values for the White River were obtained from the February 2019 Racine County Flood Insurance Study (FIS). Streamflow data for the Upper Fox River (above the White River confluence) were obtained from the January 2015 report "Upper (Illinois) Fox River Hydrologic Model", which we obtained from the WDNR.

Validation data for the July 2017 flood event were obtained from a survey of high-water points provided by the City of Burlington with flow data estimated based on data from USGS stream gage 05545750, Fox River near New Munster (about 5 miles downstream of Echo Lake Dam).

Hydrology

An independent hydrologic analysis was not completed as part of this hydraulic study. Flows for the White River were sourced directly from the Racine County FIS at location "Echo Lake Dam to Burlington City Limit". The 10-year (10-percent-annual-chance) peak flow for the Upper Fox River was assumed for all modeled events examined in this study. The 10-year flow for the Upper Fox River was determined via a drainage area transfer of the 10-year flow at Rochester Dam given in the January 2015 WDNR report

"Upper (Illinois) Fox River Hydrologic Model". The drainage area transfer is based on the method described in USGS Open-File Report 80-1214, "Techniques for estimating magnitude and frequency of floods for Wisconsin streams". Flows used for the flood profiles modeled in this study are summarized in Table 1.

	Peak Flow (cfs)		
	50-year	100-year	500-year
White River	6,350	7,450	10,450
Upper Fox River ¹	2,230	2,230	2,230

Table 1. Modeled Flows

1. Estimated 10-year peak flow used as the Upper Fox River boundary condition for all scenarios analyzed.

Model Development

Geometry

We completed the hydraulic analysis using HEC-RAS version 6.1.0. We utilized the 2D capabilities of HEC-RAS to more accurately model overbank flooding conditions, with the availability of bathymetric data and ground-surface LiDAR allowing for more accurate and detailed results. The latest version of HEC-RAS, version 6.1.0 can model hydraulic structures, including weirs and bridges, within the 2D area.

We generated the terrain surface using three sources:

- Bathymetric survey data for Echo Lake obtained by Ayres Associates in April 2021.
- 2017 Racine County LiDAR (LAS) downloaded from the Wisconsin Elevation and LiDAR data inventory hosted by the Wisconsin SCO. We used the LiDAR data to model overbank topography.
- 2015 DFA model for Echo Lake Dam. We used the geometry from this model to obtain bathymetric and bridge data for the White River and the Lower Fox River.
- 2017 DFA model for Rochester Dam. We used the geometry from this model to obtain bathymetric and bridge data for the Upper Fox River, upstream of the confluence with the White River.

Aerial images from several sources were used to ensure a representative terrain surface. The mesh boundary was extended far enough upstream to a location with high overbank terrain to ensure full coverage of any out-of-bank flow that may affect the site. The project area and model extents are shown in Figure 1.

Figure 1. Project area and HEC-RAS model extents

We generated the 2D mesh with attention given to capturing riverbanks, natural high ground, and hydraulic control structures using the placement of internal break lines. The exterior mesh perimeter was set for 50-ft spacing. Refinement regions were used to set 25-ft cell size spacing for the river

channel and the area where Milwaukee Avenue passes near Echo Lake. Cell spacing at Echo Lake Dam was set to 20 feet. The final element count for the mesh is 14,361.

Geometry for the Echo Lake Dam spillway and left embankment, plus a total of six bridges were modeled using HEC-RAS internal SA/2D connections. The elevation profile for the left embankment was obtained from LiDAR. Some localized low points in this profile were raised (where applicable) to the embankment low crest elevation (764.42 ft NAVD) determined during the April 2021 survey. Elevations and dimensions for all bridges were obtained from the 2015 Echo Lake and 2017 Rochester Dam DFA models.

Boundary Conditions

Flows for the analysis were based on the Racine County FIS and Upper (Illinois) Fox River Hydrologic Model by WDNR as described previously. We entered the HEC-RAS 2D flow inputs as constant value hydrographs (i.e., steady-flow upstream boundary conditions). This approach, while more conservative than translating peak flows to full inflow hydrographs, provided results more generally applicable for establishing compliance with Wisconsin State regulatory requirements. Furthermore, Echo Lake Dam is generally operated as run-of-the-river, with minimal storage capacity available.

For the downstream boundary condition, we used a normal depth boundary based on the energy grade slope at this location from the 2017 DFA model. Sensitivity runs confirmed that the model was carried far enough downstream to minimize effects of the downstream boundary condition on results in the study area.

Manning's n - Surface Roughness

We used the National Land Cover Database of 2016 (NLCD) to assign Manning's *n* values for the modeled 2D area. The Manning's *n* values assigned to each land cover classification, as shown in Table 2, generally follow suggested values prescribed in HEC-RAS. A Manning's *n* polygon was assigned for the river channel to enforce use of the channel value in areas of water as identified using aerial images. The Manning's *n* used for the for the river channel was 0.035, which is the channel value used in the 2015 DFA and is within the range of values used for existing floodplain studies of the White and Fox rivers (according to the Racine County Flood Insurance Study).

Surface roughness for the dam removal analysis geometry was adjusted upstream of the dam to be "Emergent Herbaceous Wetlands."

Land Cover Classification	Manning's n
Cultivated Crops	0.05
Deciduous Forest	0.1
Woody Wetlands	0.07
Developed, Low Intensity	0.1
Evergreen Forest	0.15
Mixed Forest	0.12
Open Water	0.035
Developed, Open Space	0.035
Developed, Medium Intensity	0.12
Emergent Herbaceous Wetlands	0.045
Pasture/Hay	0.045
Shrub/Scrub	0.05
Barren Land Rock/Sand/Clay	0.03
Grassland/Herbaceous	0.04
Developed, High Intensity	0.15
River Channel	0.035

Table 2. Manning's n Values

Model Validation

The model was checked for reasonableness of results by validating the model using data collected during the historic flood event that occurred in July 2017. The recorded peak flow during this flood event, on July 13, 2017 at UGSS Gage 05545750 Fox River near New Munster (about 5 miles downstream of Echo Lake Dam) is 7,900 cfs. However, there are no operating streamflow gage stations on the White River or Upper Fox River reaches near Echo Lake Dam. We approximated distribution of flows between the White and Upper Fox River reaches by selecting the White River inflow for which the resulting modeled reservoir headwater was approximately the reservoir high water elevation as surveyed during the 2017 flood event. The peak Upper Fox River inflow was then selected to maintain continuity based on the combined flow recorded at the New Munster USGS gage. Complete inflow hydrographs for the event were estimated by scaling down 500-year inflow hydrographs developed using HEC-HMS for the 2015 Echo Lake DFA.

The resulting simulated water surface elevations are generally within half a foot of surveyed high water marks. A comparison of the modeled peak flood inundation area compared to the surveyed high-water marks is provided in Figure 2. The results of this validation show that our model produces a reasonable representation of observed hydraulics in the study area during a large flood event.

Figure 2. July 2017 Flood Event Modeled Inundation

Alternatives Evaluated

We considered proposed design alternatives based on the following design criteria:

- Pass the 500-year flood or submergence flood without overtopping any portion of the dam not designed for overtopping.
- Pass the 100-year flood without increasing the 100-year flood profile.
- Prevent water from flowing over the left embankment, which provides access for operation of gates and mitigates against head cutting occurring adjacent to the spillway's left abutment during an overflow event.

Based on these criteria, the following alternatives were evaluated:

- Do nothing (existing conditions).
- Dam improvements to increase spillway capacity by raising the left embankment and either:
 - Replacing the 246-foot spillway with an operable lowerable-crest option (e.g., an inflatable rubber dam or a crest gate), or
 - Adding two radial spillway gates.
- Complete dam removal.

As a significant hazard dam, Table I found in NR333.07 (1) specifies that Echo Lake Dam must pass the 500-year (0.2-percent-annual-chance) flood discharge (10,450 cfs according to the Racine County FIS). However, Wisconsin administrative code NR333.07 (2) (a) includes the provision that, if a dam is submerged by flows less than the minimum hydraulic capacity specified in Table I, then the dam is required to pass the river flow at the point of submergence. NR333.03 (25) specifies that a dam is "submerged" when the difference between the water surface elevations upstream and downstream of a dam is one foot or less.

Currently, the dam's estimated spillway capacity just before overtopping the left embankment is less than half of the 500-year flood and also less than the 100-year flood of 7,450 cfs. Therefore, to comply with the requirement that modifications cannot raise the 100-year flood profile, any remedial design that includes raising the left embankment will need to compensate for the portion of the 100-year discharge that would pass over the left embankment crest under current conditions.

Multiple options for dam improvements to pass the design flood were evaluated. As a baseline, these improvements included raising the elevation of the left embankment to prevent overtopping and increasing the spillway capacity to maintain the 100-year floodplain elevation. Adequate spillway capacity per NR333 was then evaluated based on both the 500-year and 1-foot-difference submergence criteria.

The submergence criterium was evaluated by comparing headwater and tailwater elevations results from the HEC-RAS model at the internal SA/2D Connection used to model Echo Lake Dam.

Results

Do Nothing (Existing Conditions)

Results of the existing conditions analysis indicated that the left embankment overtops during all flood events modeled in this study. This result is in line with the DNR published capacity for Echo Lake Dam of 5,516 cfs (less than the 50-year flood of 6,350 cfs). x

Results of the model indicate that the left embankment would overtop by a maximum of 2.5 feet, 1.4 feet, and 1.0 foot during the 500-, 100-, and 50-year floods, respectively. Flood inundation and water surface elevation results are shown Figure 3 through Figure 5.

During the 500-year flood, the headwater above the dam exceeds the elevation of the top of the embankment of the Canadian National rail line adjacent to the right side of the dam, allowing flow around the dam at this location.

Figure 3. 50-yr Flood Inundation, Existing

Figure 4. 100-yr Flood Inundation, Existing

Figure 5. 500-yr Flood Inundation, Existing

Dam Improvements

Moveable Crest Spillway

We evaluated several dam improvements options for compliance with the 500-year flood criteria as described in NR333. None of these options provided sufficient capacity to pass the 500-year flood without flooding around the right (railroad) side of the dam.

To determine the maximum possible spillway capacity achievable with retrofits to Echo Lake Dam, replacement of the entire 246-foot fixed-crest spillway with an adjustable-crest configuration was evaluated. An example of such a structure would be an inflatable rubber dam or a crest gate. The low elevation for the movable crest was set to one foot above the reservoir bottom elevation, as determined during the April 2021 survey. The existing 16-ft tainter gate was left in place to serve as a low-level release structure. For this proposed option, it was necessary to raise the left embankment approximately 2 to 2.5 ft (to elevation 767.2 ft, NAVD88) for a length of approximately 300 ft to prevent overtopping during the 500-year flood.

With the modified spillway described above, results of the model indicated that flooding of the right overbank still occurred during the 500-year flood. Computed inundation for this scenario is shown in Figure 6. From these results, we determined that there are no feasible dam improvement alternatives that could achieve the 500-year spillway capacity required by NR333.

Figure 6. 500-year Flood Inundation, 246' Wide Adjustable-Crest Spillway

Addition of Radial Gates

We examined an additional alternative to replace a portion of the existing fixed crest spillway with two 16-foot-wide radial gates, in addition to raising the elevation of the left embankment to elevation 766.0 ft NAVD 88. This option does not increase capacity sufficiently to pass the 500-year flood but was found to experience submergence, according to NR333, at a flow of 7,600 cfs.

NR333.03(25) specifies that a dam is "submerged" when the difference between the water surface elevations upstream and downstream from a dam is one foot or less. To determine the submergence flow, the calculated headwater and tailwater values at the SA/2D connection used to model the Echo Lake spillway were identified as the upstream and downstream water surface elevations for establishing this submergence criterium. Figure 7 shows the Echo Lake water surface profile at the at the submergence flow at which the difference between the dam headwater and tailwater drops to just below one foot.

With the improvements described above, spillway capacity just prior to overtopping of the raised left embankment increases to 8,570 cfs (just under the 200-year flood), and this option also maintains the existing 100-year headwater elevation above the dam. The proposed embankment elevation was selected to allow overtopping during extreme events to prevent or reduce increased incremental flooding while also providing operator access to the spillway during more common flood events. The raised embankment also mitigates against headcutting adjacent to the spillway's left abutment, which may be a potential failure mechanism if the dam overtops during moderate flood events. Of importance to note is that the raised embankment does not serve to decrease flooding downstream of the dam, as flooding below the dam is a result of tailwater conditions, not overtopping. The water level of Echo Lake is increased slightly during the 500-year flood (less than 0.05 ft) due to submergence affects limiting the dam's capacity at higher flows. Figure 8 through Figure 10 show a comparison of flooding given existing conditions and after implementation of proposed improvements.

Figure 8. 50-yr Flood Inundation, Add Radial Gates

Figure 9. 100-yr Flood Inundation, Add Radial Gates

Figure 10. 500-yr Flood Inundation, Add Radial Gates

Dam Removal

The final option we evaluated is a complete removal of the dam. For this analysis, we assumed the channel above Echo Lake Dam returned to an approximation of pre-dam conditions. We approximated pre-dam conditions based on sediment probes taken during our April 2021 bathymetric survey and historical aerial imagery of the lake in a drawn-down state. Analysis results indicate the dam headwater (and associated upstream flooding) would decrease as indicated in Table 3.

	Headwater Elev		
	Existing		
Profile	Conditions	Removal	Difference (ft)
10-yr	764.7	760.9	3.8
50-yr	765.6	763.4	2.2
100-yr	766.1	764.4	1.7
500-yr	767.2	766.5	0.7

Figure 11 through Figure 13 show resulting reduced flooding upstream following dam removal.

Figure 11. 50-yr Flood Inundation, Dam Removed

Figure 12. 100-yr Flood Inundation, Dam Removed

Figure 13. 500-yr Flood Inundation, Dam Removed

Conclusions

Our results indicate that there are no feasible improvements to Echo Lake Dam to achieve capacity to pass the 500-year flood as required in State of Wisconsin Code of Regulations NR333. This is due in large part to submergence effects at the dam that result in diminishing returns for adding larger and/or deeper spillways or gates. However, the one-foot submergence criterium provision of NR333.07(2)(a) allows for a reduced design capacity achievable through viable upgrades to the dam.

We recommend improvements to Echo Lake Dam that include raising the left embankment crest to 766 ft, NAVD and adding two 16-foot-wide radial gates (replacing a portion of the existing overflow spillway). For this configuration the required design capacity is 7,600 cfs. This is the flow of the river at submergence which replaces the minimum required hydraulic capacity per the reduced requirements provision of NR 333.07(2)(a).

These improvements would provide significant benefits over existing conditions including capacity to pass up to 8,570 cfs (between the 100- and 200-year flood) and safe operator access to spillway gates during flood conditions via the raised embankment crest.

Appendix A

Bathymetric Survey

Appendix B

Profile Plots - 50-year

Appendix C

Profile Plots - 100-year

Appendix D

Profile Plots - 500-year

Appendix B

Conceptual Drawings

ECHO LAKE DAM REPAIR ALTERNATIVES CITY OF BURLINGTON NOVEMBER 2021

RACINE COUNTY

UTILITY CONTACTS

GAS COMPANY NAME STREET ADDRESS CITY, STATE ZIP ATTN: CONTACT NAME OFFICE: CONTACT INFO EMAIL: MOBILE:

ELECTRIC COMPANY NAME STREET ADDRESS CITY, STATE ZIP ATTN: CONTACT NAME OFFICE: CONTACT INFO EMAIL: MOBILE:

CABLE & INTERNET COMPANY NAME STREET ADDRESS CITY, STATE ZIP ATTN: CONTACT NAME OFFICE: CONTACT INFO EMAIL: MOBILE:

WATER COMPANY NAME STREET ADDRESS CITY, STATE ZIP ATTN: CONTACT NAME OFFICE: CONTACT INFO EMAIL: MOBILE:

DIGGERS HOTLINE

city o	DES BY	ARR				NOT FOR CONSTRUCTION	####			ECHO LAKE DAM REPAIRS	
gton	DR BY	PROJ NO)	####			####				
ourlin	OUK DV	ARR	26-1244.00	####			####				
\26\	CHKBT	AJS	NOV 2021	NO	DATE	REVISION	NO	DATE	REVISION	RACINE COUNTY, WI	EAU CLAIRE, WI

SHEET INDEX									
SHEET NUMBER	SHEET TITLE								
1	TITLE								
2	LEGEND								
3	EXISTING CONDITIONS								
4	OPTION 1 - TAINTER GATES								
5	OPTION 2 - CREST GATES								
6	OPTION 3 - SLIDE GATES								
7	FLOOD WALL & RETAINING WALL								

EXISTING

SANITARY SEWER	TRACER BOX SAN MH
WATER MAIN	
STORM SEWER	
UNDERGROUND GAS	GAS MH
UNDERGROUND ELECTRIC	
UNDERGROUND FIBER OPTIC	
UNDERGROUND TELEPHONE	TELEPHONE MH TELEPHONE MH TELEPHONE MH TELEPHONE MH
UNDERGROUND VIDEO	
OVERHEAD ELECTRIC	Отүт
OVERHEAD UTILITY	OHOH
UTILITY POLES:	POWER W/ MAST W/ LIGHT
TELEPHONE POLE	Ø
LIGHT POLE CURB AND GUTTER	-X- W/ MAST O-X-
HARD SURFACED ROADWAY	ASPHALT, CONCRETE, ETC.
NON-SURFACED ROADWAY	GRAVEL, DIRT, ETC.
SIDEWALK	SIDEWALK
STREET CENTERLINE RETAINING WALL	
TREES	
TREE LINE	\sim
HEDGE OR BUSH LINE	· uninininininini
BUSH / SHRUB	C3 O
CONTOURS	
DITCH	
FENCE	xxx
FENCE CHAIN LINK	OOO
FENCE WOOD	000
RIGHT OF WAY	
PROPERTY LINE	MARKER
SECTION LINE	SECTION CORNER
WETLAND	N N
SWAMP EDGE	sk sk sk
WATER'S EDGE	
RAILROAD	
BUILDING	OVER/DECK
GUARD RAIL	
ANCHOR	O ANCHOR
CONTROL BOX	X
METER	$\supset 0 \triangleleft$
PARKING METER	Ÿ
POLE	I ()
PULLBOX	8
RR SIGNAL FLASHER / BOX	
SIGN	
SPRINKLER HEAD	*
TRAFFIC SIGNAL	W/ MAST ARM
VALVE	VLV

NEW - OSAN VLV SANITARY SEWER FORCE MAIN ин WATER MAIN _____ STORM SEWER VPD _____ HARD SURFACE ROA NON-SURFACED ROA іднт CURB AND GUTTER SIDEWALK BASELINE ____ CONTOURS E, ETC. FENCE <u>c</u>. _____ PERMANENT EASEME TEMPORARY EASEM _____ UTILITY EASEMENT SETBACK RETAINING WALL . POND DITCH SILT FENCE - _ 99 - -- _ EROSION BALES EROSION MAT _____×____ EROSION LOG _____ SAW CUT DEMOLITION / REMO _____ GUARD RAIL TOP OF CUT - ----TOP OF FILL SPOT ELEVATION _<u>sle</u>____ CONTROL POINT 🕀 ВМ100 - - ----BENCHMARK ск∣ -<u>o</u>-o---

		TRACER WIRE ACCESS BOX	SAN LAT	ERAL WITH	
	SAN MH		CLEAN C	OL OCO	
-			-SAN		
•		WTR SERVICE & CURB STOP	— FM —	REDUCER	
	w	INSULATION	GATE V	ALVE & BOX	BEND
	<u>_</u>			APRON ENDWA	LL AND
STM	MH INL	INL AREA	STRUCTU	JRE LABEL CTURE TYPE SIZE	E-CASTING
ADWAY		ASPHALT, CO	ONCRETE, E	ETC	
ADWAY		GRAVE	L, <u>DIR</u> T, <u>ET</u>		
		SIDEW	ALK		
		10+0	00		
				I	
	10	0 0		99	-
IENT	_××	××	_×	××	
IENI					
		_	05		
	-51	-	-81		
				инини 	
VAL	XX	кххх	\sim	~~~~	\sim
		• • •	-	•	
		800.80			
	4	CP1			

ABBREVIATIONS:

A/E	ARCHITECT/ENGINEER	DEG °	DEGREE	HSE	HOUSE	PC	POINT OF CURVE	TC	TOP BACK OF CURB
AL	ALUMINUM	DI	DUCTILE IBON	HW	HOT WATER	PE	PRIVATE ENTRANCE	TEI	TELEPHONE
	ALTERNATE		DIAMETER	HWR	HOT WATER RETURN	PED	PEDESTAI	THK	THICKNESS
		DIM	DIMENSION		HYDRANIT	DEDE	DEDEORATE	TUDU	THROUGH
		DP	DOOR	mb	TT DIVANT		POINT OF INTERSECTION		TYPICAL
AUTO	AUTOMATIO	DI	DOOR	ID				ITE	TIFICAL
AUTO	AUTOMATIC	DIL	DETAIL		INSIDE DIAMETER		PROPERTY LINE		
AVE	AVENUE	DWC	DRIVEWAY	IN (*)	INCHES	PP	POWER POLE	UNEXC	UNEXCAVATED
@	AI	DWG	DRAWING	INF	INFLUENT	POF	POUNDS PER SQUARE FOUT	USH	UNITED STATES HIGHWAY
		-	= + 0 =	INL	INLE I	PSI	POUNDS PER SQUARE INCH		
BC	BACK OF CURB	E	EAST	INSUL	INSULATION	PI		V	VALVE
BII	BITUMINOUS	EA	EACH	INV	INVERI	PVC	POLYVINYL CHLORIDE	V&B	VALVE & BOX
BLDG	BUILDING	EFF	EFFLUENI	IP	IRON PIPE	PVMI	PAVEMENT	VAR	VARIABLE
BLK	BLOCK	EL	ELEVATION		10117	%	PERCENT	VC	VERTICAL CURVE
BLVD	BOULEVARD	ELB	ELBOW	JT	JOINT				
BM	BENCHMARK	ELEC	ELECTRICAL			QIY	QUANTITY	W	WEST
BO	BREAKOFF	EQ	EQUAL	LC	LENGTH OF CURVE	PAD	PADIUS	W/	WITH
BOW	BACK OF SIDEWALK	ER	END RADIUS BACK OF CURB	LF	LINEAL FEET	RAD		W/O	WITHOUT
BTM	BOTTOM	EW	EACH WAY	LP	LIGHT POLE	RCF	REINFORCED CONCRETE FIFE	WM	WATER MAIN
B/	BASELINE	EX	EXISTING	LS	LUMP SUM	RD	ROAD	WS	WATER SURFACE
1		EXP	EXPANSION	LT	LEFT	RDWT	ROADWAY	WTP	WATER TREATMENT PLANT
C&G	CURB AND GUTTER					RED	REDUCER	WTR	WATER
CB	CATCH BASIN	FF	FINISHED FOOR	MAS	MASONRY	REF	REFERENCE	WWF	WELDED WIRE EABRIC
CF	CUBIC FOOT	FD	FLOOR DRAIN	MAX	MAXIMUM	REQD	REQUIRED	WWM	WOVEN WIRE MESH
CI	CAST IRON	FDN	FOUNDATION	MFG	MANUFACTURER	REV	REVISED	WWTP	WASTEWATER TREATMENT
C/LC/	CENTERLINE	FERT	FERTILIZER	MH	MANHOLE	RR	RAILROAD		PLANT
CHL	CHLORINE	F-F	FACE TO FACE	MIN	MINIMUM	RT	RIGHT		
CMP	CORRUGATED METAL PIPE	FIN	FINISHED	MISC	MISCELLANEOUS	RW	RIGHT OF WAY		
CMU	CONCRETE MASONRY LINIT	FL	FLOWLINE	MJ	MECHANICAL JOINT				
0.00	CLEANOUT	FLG	FLANGED	MP	MID POINT	S	SOUTH		
CONC	CONCRETE	FM	FORCE MAIN	MR	MID RADIUS BACK OF CURB	SAN	SANITARY		
CP		FT (')	FOOT			SAMH	SANITARY MANHOLE		
		FTG	FOOTING	N	NORTH	SCH	SCHEDULE		
CPLG		FV	FIELD VERIEY	NO #	NUMBER	SF	SQUARE FOOT		
CTH				NOM	NOMINAL	SHT	SHEET		
CULV	CULVERT	G	GAS	NPW	NON-POTABLE WATER	SL	SLOPE		
CULV		GA	GAGE	NTS	NOT TO SCALE	SPEC	SPECIFICATION		
CV	CHECK VALVE	GALV	GAL VANIZED			SQ	SQUARE		
CW		GAR	GARAGE	oc	ON CENTER	SS	STAINLESS STEEL		
Cr	CUBIC FARD	GEN	GENERAL	OD	OUTSIDE DIAMETER	SSMH	STORM SEWER MANHOLE		
		GPD	GRADE GROUND	OH	OVERHEAD	ST	STREET		
		GV	GATE VALVE			STD	STANDARD		
		CRAV				STH	STATE TRUNK HIGHWAY		
		GW				STL	STEEL		
			GNOUNDWATER				070011		
						STM	STORM		
						STM SW	STORM SIDEWALK		

tb city o	DES BY	ARR				NOT FOR CONSTRUCTION	####			ECHO LAKE DAM REPAIRS		
ard.s	DR BY	PROJ NO		####			####				ANKES	
Stand 3/2021	CHK BY	DATE	26-1244.00	####			####					
AA- 11/3		AJS	NOV 2021	NO	DATE	REVISION	NO	DATE	REVISION	INACINE COUNTT, MI	EAU CEAIRE, WI	_

FLOOD WALL & RETAINING WALL	SHEET NO. 7

City of Burlington - Burlington, WI | OPTION 4: DAM REMOVAL WITH ENHANCEMENTS 11/02/2021 Ayres Associates | 3433 Oakwood Hills Parkway, Eau Claire, WI 54701 | 715.834.3161 | www.AyresAssociates.com | # 26-1244

Appendix C

Cost Estimates

Opinion of Probabl Project:	e Cost Echo Lake Dam Feasibility Study								November 2021	C	riginal: ARF eck Set: AJ
Client:	City of Burlington										
Location: Broinst No.	Racine County, WI										
Project No	20*0588.05										
Alternative:	Option 1: Tainter Gates										
References:	1.) Heavy Construction Cost Data . RSMeans. 2021 Quarter 4, Racine WI										
	DC Manage Manage Numbers and Description	11-14	0		2021Ba	are Costs		Tatal Isal ORD	Total them: Cost land OR D	Neters	
	ks means item number and Description	Unit	Quantity	Material Labo	or Equ	uipment	Total	Total Inci U&P	Total item cost inci O&P	Notes:	
-	Tainter Gate Alternative										
024113304200	Minor site demolition, sidewalk, concrete, mesh reinforced, 4" thick, remove, excludes hauling	S.Y.	62	0 7	7.88	1.43	9.31	13.36	\$ 831.29 Sidewall	Removal	
024113900400	Selective demolition, retaining walls, concrete retaining wall, 6' high, includes reinforcing	L.F.	140	0 5	5.04	10.21	15.25	18.73	\$ 2,622.20 Retainin	g Wall Removal	
030505100060	Selective concrete demolition, reinforcing 1% - 2% of cross-sectional area, break up into small pieces, excludes	СY	35	0 126	5 5 6	21 91	148 47	213 11	\$ 7 458 85		
	shoring, bracing, saw or torch cutting, loading, hauling, dumping	C.1.	55	0 120		21.51	140.47	215.11	Existing	Tainter Gate Removal	
033053404050	Structural concrete, in place, foundation mat (3000 psi), over 20 C.Y., includes forms(4 uses), Grade 60 rebar,	C.Y.	80	235 113	3.67	0.48	349.28	429.12	\$ 34,329,60		
	concrete (Portland cement Type I), placing and finishing								Dam Foc	ting	
033053404500	Structural concrete, in place, free-standing wall (3000 psi), 15" thick x 18' high, includes forms(4 uses), Grade	C.Y.	95	203.78 243	3.74	9.16	456.68	594.43	\$ 56,470.85 Piers		
	60 rebar, concrete (Portland cement Type I), placing and finishing					c		10.5			
038116500800	Concrete sawing, concrete walls, plain, per inch of depth, hydraulic saw	L.F.	408	0.04 3	3.77	6.23	10.04	12.5	\$ 5,100.00 Dam Rer	noval Saw Cut (8.5' high * 48" width ave)	
055213500020	Railing, pipe, aluminum, satin finish, 2 rails, 3'-6" high, posts @ 5' OC, 1-1/4" diameter, shop fabricated	L.F.	150	70.65	13	0.93	84.58	99.48	\$ 14,922.00 Retainin	g Wall Railing	
055213500020	Railing, pipe, aluminum, satin finish, 2 rails, 3'-6" high, posts @ 5' OC, 1-1/4" diameter, shop fabricated	I F	58	70.65	13	0.93	8/1 5 8	99.48	\$ 5 769 84 Walkway	Railing	
		E.I .	50	70.05	15	0.55	04.50	55.40	5 5,765.64 Walkwa	hanning	
055313100111	Floor grating, aluminum, 1" x 1/8" bearing bars @ 1-3/16" OC, cross bars @ 4" OC, up to 300 S.F., field	S F	204	3/ 28 2	21	0 17	36 76	/1 53	\$ 8.472.12 Walkway		
	fabricated from panels	5.1.	204	54.20 2		0.17	50.70	41.55	5 0,472.12 Walkwa		
312213200130	Rough grading sites, 1,100-3,000 S.F., skid steer & labor	EA.	1	0 791	56	119.52	911.08	1313.67	\$ 1,313.67 Fill Grad	ing	
3.10513E+11	Soils for earthwork, screened loam borrow, spread with 200 HP dozer, includes load at pit and haul	C.Y.	60	27.76 4	1.61	7.33	39.7	45.54	\$ 2,732.40 Fill		
312323200048	Cycle bauling(wait load travel unload or dump & return) time per cycle, excavated or borrow, loose cubic										
512525200040	vards 10 min wait/load/unload & C Y truck cycle 8 miles 25 MPH excludes loading equinment	LCY	110	0	33	3 17	6 47	8 41	\$ 925.10		

312323200040	cycle hauling(wait, load, travel, unload of dump & return) time per cycle, excavated of borrow, loose cubic									
	yards, 10 min wait/load/unload, 8 C.Y. truck, cycle 8 miles, 25 MPH, excludes loading equipment	L.C.Y.	110	0	3.3	3.17	6.47	8.41 \$	925.10	
										Retaining wall, tainter gate, spillway removal
315216100020	Cofferdams, shore driven, includes mobilization, temporary sheeting	S.F.	900	25.41	3.9	3.67	32.98	38.19 \$	34,371.00	50' Long x 6' High (12' buried)
323213102900	Cast-in place retaining walls, reinforced concrete cantilever, 33 degree slope embankment, 6' high, includes excavation, backfill & reinforcing	L.F.	140	89.89	115.22	15.59	220.7	289.47 \$	40,525.80	Retaining Wall
323213102900	Cast-in place retaining walls, reinforced concrete cantilever, 33 degree slope embankment, 6' high, includes excavation, backfill & reinforcing	L.F.	335	89.89	115.22	15.59	220.7	289.47 \$	96,972.45	Flood Wall
N/A	Tainter Gates	EA.	3					120000 \$	360,000.00	
N/A	Hoist, 240-Volt 3 Phase	EA.	3					110000 \$	330,000.00	
N/A	Sill and Side Plates	EA.	3					70000 \$	210,000.00	
N/A	Heated Sill and Side Plates - Additional	EA.	3					25000 \$	75,000.00	
N/A	Install Price for 3 Gates and Hoists	EA.	3					55000 \$	165,000.00	
N/A	240-Volt, 3-Phase Electrical Hookup	L.S.	1					30000 \$	30,000.00	
N/A	Mobilization 10%	L.S.	1					Ś	148.281.72	

Subtotal	=	\$	

1,632,000.00 489,600

Contingency (30%) = \$ Total Construction Cost= \$

Engineering/Construction Administrative = \$ Total Project Cost= \$

2,121,600 318,240 15% of Total Construction Cost 2,439,840.00

excavation, backfill & reinforcing Crest gates with hydraulic hoists

Heated Sill and Side Plates - Additional

Install Price for 3 Gates and Hoists

240-Volt, 3-Phase Electrical Hookup

Sill and Side Plates

Mobilization 10%

Cast-in place retaining walls, reinforced concrete cantilever, 33 degree slope embankment, 6' high, includes

Opinion of Probable Project:	e Cost Echo Lake Dam Feasibility Study							November 2021		Original: ARF Check Set: AJS
Client:	City of Burlington									
Location:	Racine County, WI									
Project No.:	26-0988.03									
Alternative:	Option 2: Crest Gates									
References:	1.) Heavy Construction Cost Data . RSMeans. 2021 Quarter 4, Racine WI									
	PC Means Item Number and Description	Unit	Quantity	202:	Bare Costs		Total Incl OR D	Total Itam Cast Ind ORD	Notos	
	ko wears ten number and bescription	onit	Quantity	Material Labor	Equipment	Total	Total Inci O&P	Total item cost inci oor	Notes.	
	Tainter Gate Alternative									
024113304200	Minor site demolition, sidewalk, concrete, mesh reinforced, 4" thick, remove, excludes hauling	S.Y.	62	0 7.88	1.43	9.31	13.36	\$ 831.29	Sidewalk Removal	
024113900400	Selective demolition, retaining walls, concrete retaining wall, 6' high, includes reinforcing	L.F.	140	0 5.04	10.21	15.25	18.73	\$ 2,622.20	Retaining Wall Removal	
030505100060	Selective concrete demolition, reinforcing 1% - 2% of cross-sectional area, break up into small pieces, excludes	C.Y.	35	0 126.56	21.91	148.47	213.11	\$ 7.458.85		
	shoring, bracing, saw or torch cutting, loading, hauling, dumping							,	Existing Tainter Gate Removal	
033053404050	Structural concrete, in place, foundation mat (3000 psi), over 20 C.Y., includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing	C.Y.	112	235 113.67	0.48	349.28	429.12	\$ 48,061.44	Dam Footing	
033053404500	Structural concrete, in place, free-standing wall (3000 psi), 15" thick x 18' high, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing	C.Y.	33	203.78 243.74	9.16	456.68	594.43	\$ 19,616.19	Piers	
038116500800	Concrete sawing, concrete walls, plain, per inch of depth, hydraulic saw	L.F.	408	0.04 3.77	6.23	10.04	12.5	\$ 5,100.00	Dam Removal Saw Cut (8.5' high * 48" width ave)	
055213500020	Railing, pipe, aluminum, satin finish, 2 rails, 3'-6" high, posts @ 5' OC, 1-1/4" diameter, shop fabricated	L.F.	150	70.65 13	0.93	84.58	99.48	\$ 14,922.00	Retaining Wall Railing	
055213500020	Railing, pipe, aluminum, satin finish, 2 rails, 3'-6" high, posts @ 5' OC, 1-1/4" diameter, shop fabricated	L.F.	50	70.65 13	0.93	84.58	99.48	\$ 4,974.00	Walkway Railing	
055313100111	Floor grating, aluminum, 1" x 1/8" bearing bars @ 1-3/16" OC, cross bars @ 4" OC, up to 300 S.F., field									
	fabricated from panels	5.F.	198	34.28 2.31	0.17	36.76	41.53	\$ 8,222.94	waikway	
312213200130	Rough grading sites, 1,100-3,000 S.F., skid steer & labor	EA.	1	0 791.56	119.52	911.08	1313.67	\$ 1,313.67	Fill Grading	
3.10513E+11	Soils for earthwork, screened loam borrow, spread with 200 HP dozer, includes load at pit and haul	C.Y.	60	27.76 4.61	7.33	39.7	45.54	\$ 2,732.40	Fill	
312323200048	Cycle hauling(wait, load, travel, unload or dump & return) time per cycle, excavated or borrow, loose cubic									
	yards, 10 min wait/load/unload, 8 C.Y. truck, cycle 8 miles, 25 MPH, excludes loading equipment	L.C.Y.	110	0 3.3	3.17	6.47	8.41	\$ 925.10		
								1	Retaining wall, tainter gate, spillway removal	
315216100020	Cofferdams, shore driven, includes mobilization, temporary sheeting	S.F.	900	25.41 3.9	3.67	32.98	38.19	\$ 34,371.00	50' Long x 6' High (12' buried)	
323213102900	Cast-in place retaining walls, reinforced concrete cantilever, 33 degree slope embankment, 6' high, includes excavation, backfill & reinforcing	L.F.	140	89.89 115.22	15.59	220.7	289.47	\$ 40,525.80	Retaining Wall	

Page 2 of 3

Subtotal =	\$ 1,770,000.00
(

96,972.45 Flood Wall

720,000.00

270,000.00

75,000.00

225,000.00

30,000.00

160,864.93

Contingency (30%) = \$ 531,000 2,301,000

Total Construction Cost= \$ Engineering/Construction Administrative = \$ 345,150 15% of Total Construction Cost

289.47 \$

240000 \$

90000 \$

25000 \$

75000 \$

30000 \$

Ś

Total Project Cost= \$ 2,646,150.00

L.F.

EA.

EA.

EA.

EA.

L.S.

L.S.

335

3

3

3

3

1

1

89.89 115.22

15.59 220.7

323213102900

N/A

N/A

N/A

N/A

N/A

N/A

Opinion of Probable Project:	e Cost Echo Lake Dam Feasibility Study								November 202:	Original: Check Set	ARF : AJS
Client:											
Location: Droject No. :	Racine County, WI										
Project No.:	26-0988.03										
Alternative:	Option 3: Slide Gates										
References:	1.) Heavy Construction Cost Data . RSMeans. 2021 Quarter 4, Racine WI										
					202	1Bare Costs					
	RS Means item Number and Description	Unit	Quantity	Material L	abor	Equipment	Total	Total Inci O&P	Total item Cost Inci O&P	Notes:	
	Tainter Gate Alternative										
024113304200	Minor site demolition, sidewalk, concrete, mesh reinforced, 4" thick, remove, excludes hauling	S.Y.	62	0	7.88	1.43	9.31	13.36	\$ 831.29	Sidewalk Removal	
024113900400	Selective demolition, retaining walls, concrete retaining wall, 6' high, includes reinforcing	L.F.	140	0	5.04	10.21	15.25	18.73	\$ 2,622.20	Retaining Wall Removal	
030505100060	Selective concrete demolition, reinforcing 1% - 2% of cross-sectional area, break up into small pieces, excludes	сv	25	0	126 56	21.01	149 47	212 11	¢ 7.459.95		
	shoring, bracing, saw or torch cutting, loading, hauling, dumping	C.1.	35	0	120.50	21.91	140.47	215.11	ç 7,438.83	Existing Tainter Gate Removal	
033053404050	Structural concrete, in place, foundation mat (3000 psi), over 20 C.Y., includes forms(4 uses), Grade 60 rebar,	C V	37	225	113 67	0.48	3/0 28	129 12	\$ 15 877 <i>AA</i>		
	concrete (Portland cement Type I), placing and finishing	C.1.	57	255	115.07	0.40	345.20	425.12	ý 15,077. 1 4	Dam Footing	
033053404500	Structural concrete, in place, free-standing wall (3000 psi), 15" thick x 18' high, includes forms(4 uses), Grade	C V	23	203 78	2/13 7/	9.16	456.68	59/ /3	\$ 13 671 89	Diers	
	60 rebar, concrete (Portland cement Type I), placing and finishing	C.1.	25	205.70	245.74	5.10	450.00	554.45	Ş 13,071.05		
038116500800	Concrete sawing, concrete walls, plain, per inch of depth, hydraulic saw	L.F.	408	0.04	3.77	6.23	10.04	12.5	\$ 5,100.00	Dam Removal Saw Cut (8.5' high * 48" width ave)	
055213500020	Railing, pipe, aluminum, satin finish, 2 rails, 3'-6" high, posts @ 5' OC, 1-1/4" diameter, shop fabricated	LE	150	70.65	13	0.93	84 58	99.48	\$ 14 922 00	Retaining Wall Bailing	
055213500020	Railing, pipe, aluminum, satin finish, 2 rails, 3'-6" high, posts @ 5' OC, 1-1/4" diameter, shop fabricated	L.F.	54	70.65	13	0.93	84.58	99.48	\$ 5.371.92	Walkway Railing	
055313100111	Floor grating, aluminum, 1" x 1/8" bearing bars @ 1-3/16" OC, cross bars @ 4" OC, up to 300 S.F., field	S.F.	216	34.28	2.31	0.17	36.76	41.53	\$ 8,970,48	Walkway	
	fabricated from panels	-			-	-					
312213200130	Rough grading sites, 1,100-3,000 S.F., skid steer & labor	EA.	1	0	791.56	119.52	911.08	1313.67	\$ 1,313.67	Fill Grading	
3.10513E+11	Soils for earthwork, screened loam borrow, spread with 200 HP dozer, includes load at pit and haul	C.Y.	60	27.76	4.61	7.33	39.7	45.54	\$ 2,732.40	Fill	
242222200040	Costs have the second stand and so there is a stand with the second stand and so have a while										
312323200048	Cycle nauling(wait, load, travel, unload or dump & return) time per cycle, excavated or borrow, loose cubic										

5125252000	to cycle nading wait, load, if aver, amoda of admp & retarny time per cycle, excavated of borrow, loose cable							
	yards, 10 min wait/load/unload, 8 C.Y. truck, cycle 8 miles, 25 MPH, excludes loading equipment	L.C.Y.	110	0 3.3	3.17	6.47	8.41 \$	925.10
								Retaining wall, tainter gate, spillway removal
3152161000	20 Cofferdams, shore driven, includes mobilization, temporary sheeting	S.F.	900	25.41 3.9	3.67	32.98	38.19 \$	34,371.00 50' Long x 6' High (12' buried)
3232131029	Cast-in place retaining walls, reinforced concrete cantilever, 33 degree slope embankment, 6' high, includes	L.F.	140	89.89 115.22	15.59	220.7	289.47 \$	40.525.80
	excavation, backfill & reinforcing							Retaining Wall
3232131029	Cast-in place retaining walls, reinforced concrete cantilever, 33 degree slope embankment, 6' high, includes	LE	335	89 89 115 22	15 59	220.7	289.47 Ś	96 972 45
	excavation, backfill & reinforcing	C.1 .	555	05.05 115.22	15.55	220.7	200.47 9	Flood Wall
N/A	Slide gate, frame, and electric actuators	EA.	3				153600 \$	460,800.00
N/A	Install Price for 3 Gates and Hoists	EA.	3				61440 \$	184,320.00
N/A	Deicing System	EA.	3				5000 \$	15,000.00
N/A	240-Volt, 3-Phase Electrical Hookup	L.S.	1				30000 \$	30,000.00
N/A	Mobilization 10%	L.S.	1				\$	94,178.65

Subtotal =	\$ 1,036,000.00	
Contingency (30%) =	\$ 310,800	
Total Construction Cost=	\$ 1,346,800	
Engineering/Construction Administrative =	\$ 202,020	15% of 1
Total Project Cost=	\$ 1,548,820.00	

Total Construction Cost

Opinion of Probable Cost Option 4: Dam Removal With Enhancements

City of Burlington Burlington, WI

November 2021

	DESCRIPTION	UNITS	QUANTITY		UNIT PRICE		TOTAL PRICE
1	Mobilization/Demobilization	LS	1	\$	368,590	\$	368,590.00
2	Temporary erosion control	LS	1	\$	50,000	\$	50,000.00
DAM REMO	OVAL & RIVER RESTORATION						
3	Construction Dewatering	LS	1	\$	25,000	\$	25,000.00
4	Remove and Dispose of Trapped Sediment near Dam	CY	5000	\$	22	\$	110,000.00
5	Dam Demolition and Disposal	CY	590	\$	80	\$	47,200.00
6	Turbidity Barrier	LF	150	\$	12	\$	1,800.00
7	Riprap stabilization and permanent erosion control	CY	8060	\$	100	\$	806,000.00
8	Seeding (Wetland)	AC	29	\$	875	\$	25,000.00
MUNICIPAI	L & RECREATIONAL UPGRADES						
9	Stormwater Retention Earthwork	CY	3500	\$	15	\$	52,500.00
10	Box Culvert	LF	70	\$	350	\$	24,500.00
11	Pedestrian Bridge	LS	1	\$	674,400	\$	674,400.00
12	Fishing pond Earthwork	CY	19500	\$	15	\$	292,500.00
13	Furnish & Install Boardwalk	SF	30400	\$	50	\$	1,520,000.00
14	Furnish & Install Kayak launch and boardwalk at Wagner Park (ADA						
14	Accessible)	LS	1	\$	57,000.00	\$	57,000.00
Subtotal:							\$4,054,490
Contingency of 30%							\$1,216,347
			C	Cons	struction Total:		\$5,270,837
	Engineering Total (Design, Bid	ding, and	Constructio	n A	dministration)		\$790,626
					Project Total:		\$6,061,463

Appendix D

Pre-Dredging Study

Echo Lake Pre-Dredging Study

City of Burlington Racine County, Wisconsin

Prepared for:

City of Burlington

June 2021

www.AyresAssociates.com

Echo Lake Pre-Dredging Study

City of Burlington Racine County, WI

June 2021

3376 Packerland Drive Ashwaubenon, WI 54115 920.498.1200 www.AyresAssociates.com

Ayres Project No. 26-1258.00 File: i:\26\burlington city of dam\26-1258.00 echo lake pre-dredging study\report\echo lake pre-dredging study.docx

Contents

Page No.

1.	Introduction	. 1
2.	Survey Conditions	. 1
3.	Survey Methods and Data Processing	. 1
4.	Sediment Sampling Results	. 3
5.	Sediment Volume	. 3
6.	Phosphorous Load	. 4
7.	Opinion of Probable Cost	. 5
8.	Recommendation	. 6
9.	Conclusions	. 6

List of Appendices

Appendix A: Drawings Appendix B: Sediment Sampling Information

List of Figures

Figure 1. Single Beam Max showing dual-frequency echosounder soundings plotting depth

List of Tables

Table 1. Milwaukee International Airport weather during the survey period......1 Table 2. Equipment used during survey of Echo Lake 2 Table 5. Opinion of probable cost for dredging 6

Page No.

Page No.

1. Introduction

Echo Lake is 70-acre reservoir that is fed by the White River and Honey Creek. The lake is controlled by the 300-foot-long Burlington (Echo Lake) Dam located at the southeast end near the Milwaukee Avenue bridge. After leaving the dam, the White River joins the Fox River approximately 0.25 miles downstream.

The City of Burlington is considering adaptive management options to control phosphorus levels in its waterways. One option of interest is possibly dredging Echo Lake to remove phosphorus-contaminated sediments. Sediment removal may also have a secondary benefit of improving recreational opportunities in Echo Lake. Ayres was retained to complete a pre-dredging study which included surveying the impoundment, estimating sediment volumes, estimating the total phosphorus load, and identifying other significant contaminants within the sediment.

A sediment sampling plan was prepared and submitted to the Wisconsin Department of Natural Resources (DNR) on April 13, 2021. Ayres requested follow up on April 26th and 28th prior to the scheduled survey but no response was provided.

2. Survey Conditions

The bathymetric survey and sampling were completed on April 29, 2021 with Ayres arriving onsite at 9:30 AM and departing around 4:45 PM. *Table 1* lists the Milwaukee Mitchell International Airport weather during the survey period.

	April 29, 2021
Precipitation	0
Maximum temperature	62 F
Minimum temperature	53 F
Maximum windspeed	12 mph

Table 1. Milwaukee International Airport weather during the survey period

Ayres was unable to survey the entire lake due to shallow water depths and/or obstructions (e.g., fallen trees along the shore). Generally, shallow areas with less than 1 foot of water depth were not surveyable. Ayres did attempt to survey the outer limits of the shallow areas so that their extents would be accurately represented in the lake bathymetry.

3. Survey Methods and Data Processing

Ayres survey equipment used to complete the survey are presented in *Table 2*.

The depth soundings were obtained using a dual-frequency echosounder that was positioned with a submeter global positioning system (GPS). The collected soundings were displayed in real time by Hypack Max 2021 to provide quality control of collected data. Over 10,000 depth soundings were collected during the survey but approximately 2,200 soundings were filtered out during post processing. Soundings were filtered first in Hypack Max to remove excessive bed roughness, fish and water column obstructions, anomalous propagation (multiple reflections of sonar beam off bed and water surface), and other common hydrographic survey errors.

	Survey Equipment
Echosounder	Sonarmite DFX 200kHz/33kHz
Connection Method	RS232 / Hypack Max 2021
Positioning	Trimble GeoXH GNSS
Land Survey	Trimble Geo7x RTK
Boat Length	14 feet
Boat Motor	8HP Mercury
Sediment Sampler	AMS Multistage Sampler
Sediment Probes	Survey Range Poles

Table 2. Equipment used during survey of Echo Lake

In *Figure 1*, the blue dots are 33-kilohertz data points, which tend to penetrate leaf litter and sediment fluff, while the red dots show 200-kilohertz data points that do not penetrate into the bed. Sediment fluff is the detritus, finer silty sediment, and biota that has the consistency of thick soup. Generally, the 200-kilohertz signal will bounce off the fluff while the 33-kilohertz signal tends to have a peak return from the slightly more compacted sediment. A depth check was done multiple times with a survey rod to confirm the 33-kilohertz depth readings were correctly recorded in Hypack.

Figure 1. Single Beam Max showing dual-frequency echosounder soundings plotting depth over time

The processed data were then exported to a comma-separated values file and Excel was used to correct for the draft of the sounder from the water surface and to convert the depth soundings into elevations. The sounder was positioned below the water surface approximately 9 inches while surveying. Each depth was increased by 9 inches and then subtracted from the surveyed water surface elevation of 762.15 feet NAVD88. The water surface elevation was obtained by using the Trimble Geo7x RTK survey grade GPS. The nearby NGS benchmark located on the dam was also shot to confirm the water surface accuracy.

The last step in processing was to import all the Excel data to AutoCAD 2018 Civil 3D to add the water's edge breaklines (based on 2010 Racine County 2-ft contour LiDAR data), structure breaklines (edges of the dam), and island breaklines. After using breaklines, data points are replotted to check for anomalies like shoreline zigzags that reflect lateral transects or spikes in contours where two transects cross and have slightly different elevations. These artificial surface flaws are corrected by deleting the points thought to be least reliable or adding breaklines to eliminate excessively narrow triangulation.

After the data set produces a reasonable set of contours, the jaggedness of contours is removed through gridding. This final process helps create smoother 1-foot contours. The final bathymetric map is shown in Appendix A. In general, depths in the lake average about 2 feet.
4. Sediment Sampling Results

Six samples were collected during the survey with an AMS multistage sediment sampler. Pace Analytical Laboratories in Green Bay were retained to conduct the sediment testing. Pace provided the necessary sample collection jars/bags and transportation cooler to facilitate the sampling. All samples were delivered to Pace on ice the same day as collected. Sample locations are shown in the Appendix A 2021 *Probe and Samples Map* drawing.

Samples #1 and #4 were collected near or within the assumed original lake bed, and samples #2 and #5 were collected in sediment that is likely to be dredged. Samples #3 and #6 were also collected in sediment that is likely to be dredged but were only tested for phosphorus, while the remaining samples were tested for all the proposed analytes including phosphorus (see the Sediment Sampling Plan in Appendix B). The summarized sampling results that were entered into the DNR's residual contaminant levels (RCLs) spreadsheet are shown in *Table 3*, and the complete sampling report created by Pace is provided in Appendix B.

The testing results showed several metals above Groundwater RCL (*italic red*), but there are no exceedances detected for non-industrial or industrial RCLs. The Cumulative Risk Calculation does not appear to propose any concern either, but the full sampling results will be submitted to the DNR for review and final determination of direct contact risks.

5. Sediment Volume

Sediment depth was estimated by pushing survey range poles into the sediment until refusal. The depths were measured from the water surface and recorded with the Trimble GeoXH GPS. The depths were later converted into elevations in Excel and imported into AutoCAD 2018 Civil 3D to create a refusal surface.

A volume computing comparison surface was created to estimate the total sediment in the entire lake from the boat landing on Bieneman Road to the dam. This surface was created by comparing the very top of the sediment (red dots, 200kHz) to the refusal surface (probes), which calculated approximately 279,645 cubic yards of accumulated material.

Two more volume computing comparison surfaces were created to estimate the volumes of potential dredge material. For these computations, we considered a feasible dredging area to be the lake from the railroad trestle to the dam. Within this dredging area, we set the dredged lake bottom elevation to a uniform 758.0 ft, which would result in approximately 4 ft of water depth throughout. The first surface was the very top of sediment (red dots, 200kHz) compared to the proposed dredge contours which calculated approximately 130,482 cubic yards of material that could be dredged. This volume includes the top sediment fluff that would likely compact down or be flushed out of the reservoir during drawdown. The second surface of the slightly more compacted sediment (blue dots, 33kHz) was compared to the proposed dredge contours which calculated approximately 99,980 cubic yards of material. Ayres used the average volume of 115,231 to the estimate the sediment that could be dredged for recreational purposes and phosphorus removal.

				Sum mary Echo L	of Soil An ake Pre-Dre	alytical Resident	sults				
				Commente o							
		1	2	Samples	4	5	6				<u> </u>
		Lake Bed	Sediment	Sediment	Lake Bed	Sediment	Sediment				
	Date	4/29/21	4/29/21	4/29/21	4/29/21	4/29/21	4/29/21				
	Soil Type	Silt	Silt	n/a	Silt	Silt	n/a	NR 720	WDNR Spre	adsheet RC	Ls
Parameter	CAS							Non-industrial Direct Contact	Industrial Direct Contact	Protection of Ground Water	Back Ground Threshold Value
					Metals	;					
Arsenic	7440-38-2	6.5	70		5.5	8.0		0.677	3	0.584	8
Barium	7440-39-3	134	97.0		134	109		15.300	100.000	164.8	364
Cadmium	7440-43-9	1.2 J	1.3 J		0.58 J	0.48 J		71.1	985	0.752	1
Chromium	7440-47-3	24.8	51.1		23.7	26.9		100,000	100,000	360,000	44
Copper	7440-50-8	15.8	15.1		16.5	16.1		3,130	46,700	92	35
Lead	7439-92-1	18.7	18.1		24.3	26.9		400	800	27	52
Manganese	7439-96-5	744	477		654	473		1,830			2,937
Mercury	7439-97-6	0.17	0.18		0.21	0.19		3.13	3.13	0.208	
Nickel	91-20-3	16.9	50.0		16.6	27.5		1,550	22,500	13.061	31
Selenium	7140 66 6	3.7 74.7	<u> </u>		2.9 70.6	2.1 76.0		391	5,840	0.52	
ZIIIC	7440-00-0	/4./	03.5		Nutrion	70.0		23,300	100,000		150
	7700 / / 0	0.05	4000	1710	Nutrien	15	070				
Phosphorus	7723-14-0	965	1330	1710	738	803	873				
Nitrogen, Ammonia	7004-41-7	293	621		468	264					
Nitrogen, Kjeldani, Total	7440 44 0	4300	66200		4300	4000					
Total Organic Carbon	7440-44-0	48000	78200		55300	40300					
Total Organic Carbon	1440 44 0	40000	10200	Polychlor	insted Bin	honvle (PC	Be)				
	4000.00.0	0.0040	0.0400	Polycillor	Inateu Bipi		05)	1	1	1	-
PCB, Iotal	1336-36-3	<0.0319	<0.0400		<0.0304	<0.0309					
PCB-1016 (Aroclor 1016)	12074-11-2	<0.0319	<0.0400		<0.0304	<0.0309		4.11	51.30		
PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232)	111/1-16-5	<0.0319	<0.0400		<0.0304	<0.0309					
PCB-1242 (Aroclor 1242)	53469-21-9	<0.0319	<0.0400		<0.0304	<0.0309					
PCB-1248 (Aroclor 1248)	12672-29-6	< 0.0319	<0.0400		< 0.0304	< 0.0309					
PCB-1254 (Aroclor 1254)	11097-69-1	< 0.0319	< 0.0400		< 0.0304	< 0.0309		1.17	14.70		
PCB-1260 (Aroclor 1260)	11096-82-5	<0.0319	< 0.0400		< 0.0304	< 0.0309					
			Pol	ycyclic Are	omatic Hyd	rocarbons	(PAHs)				
1-Methylnaphthalene	90-12-0	<0.0051	< 0.0064		0.0243 J	<0.0050		4,180	52,700		
Acenaphthene	83-32-9	< 0.0045	< 0.0057		< 0.0043	< 0.0044		3,590	45,200		
Acenaphthylene	208-96-8	< 0.0044	< 0.0055		0.0055 J	< 0.0043					
Anthracene	120-12-7	<0.0045	0.0241 J		0.0098 J	0.0350		17,900	100,000	196.94915	
Benzo(a)anthracene	56-55-3	< 0.0040	0.0202 J		0.0055 J	0.0356		1.14	20.8		
Benzo(a)pyrene	50-32-8	<0.0049	0.0250 J		0.0103 J	0.0511		0.115	2.11	0.47	
Benzo(b)fluoranthene	205-99-2	< 0.0041	0.0143 J		0.0055 J	0.0258 J		1.15	21.1	0.4780876	
Benzo(g,h,i)perylene	191-24-2	< 0.0061	0.0129 J		< 0.0059	0.0234 J					
Benzo(k)fluoranthene	207-08-9	<0.0045	0.0137 J		0.0045 J	0.0182 J		11.5	211		
Dibonz(a b)onthrocore	53 70 2		0.0240 J		<0.0095 J	0.0402		115	2110	0.1442231	
Eluoranthono	206-44-0	<0.0048	0.0548		0.0040	0.0074 J		2 200	2.11	88 877905	
Fluorene	86-73-7	<0.0041	<0.0040		0.0094.1	<0.0000		2,390	30,100	14 829932	
Indeno(1.2.3-cd)pyrene	193-39-5	< 0.0073	0.0115 J		< 0.0070	0.0220 J		1.15	21.1		
Naphthalene	91-20-3	< 0.0034	< 0.0043		0.0232 J	< 0.0033		5.52	24.1	0.6581818	
Phenanthrene	85-01-8	< 0.0040	0.0328 J		0.0242 J	0.0386					
Pyrene	129-00-0	<0.0051	0.0450		0.0223 J	0.0697		1,790	22,600	54.545455	
		C	umulative	Risk Calcu	lation (Nor	n-Industria	I Direct Co	ontact)			
F	xceedances	0	0		0	0		1	1		
ŀ	Hazard Index	0.0724	0.1193		0.0546	0.0550		1	1		
	Cancer Risk	11E-06	1.5E-06		1.1E-06	11E-04		1.00E-05	1.00E-05		
Notes:											
Samples 3 and 6 only analy	zed for Phos	sphorus									
J = Estimated concrentratio	n at or above	e the Limit of	Detection a	and below t	ne Limit of C	uantification	۱				
S = less than detection limit Groundwater PCL avcord:	analyte not	uetected)	nt								
Non-Industrial Direct Conta	ct RCL excee	ances are	e in bold re	font							
Industrial RCL exceedance	s are boxed.										

Table 3. Summarized sediment sampling results for Echo Lake

6. Phosphorous Load

A total of six samples were tested for phosphorus with two of the samples collected in assumed lake bed material and four samples located in more recently deposited sediment that could potentially be dredged. Sample 6 was taken upstream of the railroad bridge and the current dredging plans do not propose dredging upstream of the bridge. The phosphorus testing results of the three sediment samples within the proposed dredge area showed an average of 1,281 mg/kg of phosphorus within the sediment. Ayres estimates approximately 502,000 pounds of phosphorous will be removed if 115,231 cubic yards of

sediment is dredged from the impoundment. The calculation is shown in *Table 4* and provided in Appendix B.

Dredge volume estimate Avg sediment density Phosphorus in sediment	(average of 33/200kHz sediment surfaces) (average value from "Earth Manual" correlating to testing results) (average of 3 sediment samples within dredge area (not lake bed samples))					
Phosphorus Load Estimate Calculation	115,231 cy 88,100.42 m ³ 177,786,649,26 kg	x x x	0.764554858 m ³ /cy 2,018 kg/m ³ 1.281 mg/kg	=	88,100.42 m ³ 177,786,649.26 kg 227,744,697,701.49 mg	
	227.744.697.701.49 mg	x	0.000002204 lb/mg	=	501.949.31 lb of phosphorus in sediment	

Table 4. Estimated phosphorus load within proposed dredged sediment

7. Opinion of Probable Cost

The Opinion of Probable Costs is based on dredging the main portion of Echo Lake from the railroad trestle to Milwaukee Avenue and the dam. At this time, Ayres anticipates that dredging upstream of the railroad bridge may be infeasible because it would increase the total project cost significantly. The railroad trestle has insufficient clearance to allow contractors to mobilize between upstream and downstream dredging areas. Therefore, two separate offloading and staging areas would likely be required, which would result in significant additional mobilization costs. However, if the City is interested in dredging upstream of the railroad trestle, Ayres can provide sediment volume and phosphorus loading calculations to support the expanded scope.

The dredge area as shown in the *Proposed Dredge Map* drawing (Appendix A) depicts a dredge bottom elevation of 758.0 ft which would provide approximately 4 feet of water depth in the lake between the trestle and the dam. Elevation 758.0 ft was also proposed because it was the sediment probe elevation where most refusals occurred. The DNR does not allow dredging within 10 feet of the shoreline. This no-dredge buffer allows for fish and other aquatic animals' habitat to remain undisturbed. Ayres recommends extending the no dredge buffer to 15 feet to account for LiDAR inconsistencies and to provide the contractor some leeway to maintain the minimum buffer distance. The dredging side slope starts at the edge of the 15-foot no-dredge buffer and extends 3 feet horizonal to 1 foot vertical until reaching the dredge bottom elevation of 758.0 ft.

This Opinion of Probable calculation breakdown is provided in *Table 5*. As shown, Ayres estimates the total cost to dredge the lake as described above to be approximately \$2.5 million. The cost estimate is based on RS Means Heavy Construction Cost Data from 2020, but the resulting cost per cubic yard of sediment removal (about \$22 per cubic yard) is consistent in magnitude with what we have encountered for other local and comparable dredging projects. The cost estimate assumes mechanical dredging in the winter after the lake has been drawn down, and that the City will secure a nearby offloading and staging area and a disposal site within 2 miles of the lake. Several other Ayres dredging clients have found local farmers willing to accept the nutrient-rich sediment to be spread on agricultural fields. The sediment testing results indicate that disposal of dredged sediments on agricultural fields should be acceptable as no dangerous levels of contamination were encountered. However, the DNR must ultimately approve of any disposal sites chosen for the project.

Table 5. Opinion of probable cost for dredging

Opinion o	of Probable Cost										
May-21											
Project:	Echo Lake Pre-Dredging Study								-		
Client:	City of Burlington										
Location:	Racine County, WI										
Project No.:	26-1258.00	_									
References:	1.) Heavy Construction Cost Data. RSMea	ins. 34th Ai	nnual Editio	on. 2020.							
			2020 B	are Costs			Total Item Cost				
RS	Means Item Number and Description	Unit	Quantity	Material	Labor	Equipment	Total	Total Incl O&P		Incl O&P	Notes:
Division 35-	Waterway and Marine										
35 24 23.13	Dredging										
1100	Mobilization	Total	1		31,000	29000.00	60,200	78,500	\$	78,500.00	*assumes nearby offloading site
0510	Mechanical dredging	C.Y.	115231		4.85	3.35	8.20	12.1	\$	1,394,295.10	
Division 31	Earthwork										
31 23 23.20	Hauling										
1050	12CY truck, 30 mph, cycle 4 miles	C.Y.	115231		1.55	2.27	3.82	4.83	\$	556,565.73	*assumes clean sediment & nearby farm field for disposal
Misc											
	Offloading Site Preparation	L.S.	1						\$	10,000.00	
	Offloading Site Restoration	L.S.	1						\$	5,000.00	
					_		_		\$	2,044,360.83	
						Su	btotal fo	or All Divisions =	\$	2,044,360.83	
							Cont	ingency (20%) =	\$	408,872.17	
						T	otal Con	struction Cost =	\$	2,453,233.00	

8. Recommendation

If the City would like to pursue dredging, the next step is to identify potential staging/offloading areas and disposal site options. Once these sites have been selected and 90% final dredging plans and specifications have been prepared, a pre-permit application can be submitted to the DNR to initiate the Individual Dredging Permit application process.

9. Conclusions

Surveyed water depths within Echo Lake were generally in the 1- to 2-foot range below the assumed normal lake elevation of 762.15 feet NAVD88. Dredging of the main portion of the lake as described previously will increase these depths to about 4 feet and will decrease the phosphorous load in the lake sediments by an estimated 502,000 pounds.

Ayres appreciates the opportunity to complete this pre-dredging study. As with all studies, Ayres has based the opinions rendered herein on data reviewed at the time this report was published, and it may be possible that additional data unavailable to Ayres at publishing will change our opinions. If additional new data is found that contradicts this report, please provide to Ayres so that we can re-evaluate our opinions.

Appendix A: Drawings

Appendix B: Sediment Sampling Information

From:	Wayne, Robert
То:	"theresa.alvarez@wisconsin.gov"
Cc:	Schneider, Adam; "priggs@burlington-wi.gov"
Subject:	FW: Echo Lake Sampling Plan - City of Burlington
Date:	Monday, April 26, 2021 10:29:00 AM
Attachments:	Echo Lake Sampling Plan.pdf
	image001.png
	image002.png
	image003.png
	image004.png

Hi Theresa,

We are looking at surveying and sampling on Thursday 4/26. Do you have any modifications to the sampling plan?

Thanks,

Rob

Robert J Wayne Environmental Scientist

Ayres Associates Inc

Office: 715.834.3161 | Direct: 715.831.7506 WayneR@AyresAssociates.com www.AyresAssociates.com

From: Wayne, Robert
Sent: Tuesday, April 13, 2021 4:08 PM
To: theresa.alvarez@wisconsin.gov
Cc: Schneider, Adam <SchneiderA@ayresassociates.com>; priggs@burlington-wi.gov
Subject: Echo Lake Sampling Plan - City of Burlington

Hi Theresa,

Please see the attached sediment sampling plan for Echo Lake in the City of Burlington.

Let us know if you have any questions.

Thanks,

Rob

Robert J Wayne | Environmental Scientist Office: 715.834.3161 | Direct: 715.831.7506 3433 Oakwood Hills Parkway | Eau Claire, WI 54701-7698 Ayres Associates Inc | www.AyresAssociates.com Ingenuity, Integrity, and Intelligence.

April 13, 2021

Theresa Alvarez Wisconsin Department of Natural Resources Milwaukee Service Center 2300 North Dr Martin Luther King Jr Drive Milwaukee, WI 53212

Submitted via email: theresa.alvarez@wisconsin.gov

Subject: Echo Lake Sampling Plan, Racine County

Dear Ms. Alvarez,

The purpose of this letter is to submit a sampling and analysis plan for the dredging of Echo Lake in the City of Burlington, Wisconsin. The City of Burlington is considering adaptive management options to control phosphorus levels in its waterways. One option of interest is possibly dredging Echo Lake to remove phosphate-contaminated sediments. Sediment removal may also have a secondary benefit of improving recreational opportunities in the lake. The sampling is planned to occur concurrently with a sediment profile survey which we are tentatively planning on the week of April 26, 2021. The sediment profile survey will provide a basis for estimating a potential volumetric range of sediment that could be dredged from Echo Lake.

Please approve or advise modifications to the attached sediment sampling and analysis plan.

If the plan is approved, the completed sampling report and analytical results will be submitted to your office.

Sincerely,

Ayres Associates Inc

Adam Schneider, PE Project Manager 920-327-7842 SchneiderA@AyresAssociates.com

920.498.1200 | 3376 Packerland Drive | Ashwaubenon, WI 54115 www.AyresAssociates.com Ms. Theresa Alvarez April 13, 2021 Page 2 of 2

Sediment Sampling and Analysis Plan Echo Lake – Burlington, WI

Preliminary Application Summary, per NR 347.05:

- Name of waterbody and project location:
 - <u>Echo Lake</u>– Located in the City of Burlington
- Volume of material to be dredged:
 - Purpose of this study is to determine the volumetric build-up of sediment in Echo Lake to more accurately determine amount of sediment that could be dredged.
- Dredging method and disposal method:
 - Mechanical dredging is assumed method. The City of Burlington is currently looking into disposal site options.
- Brief description of known historical chemical use in the waterbody for vegetation / algae control, including year, chemical, and amount applied:
 - It is unknown if chemicals were previously used to treat Echo Lake.
 - Most land in the Echo Lake <u>watershed</u> is agriculture (44.8%), forest (14.4%), wetland (11.3%) and other uses (29.5%).
 - Any previous sediment sampling:
 - $\circ \quad \text{Unknown.}$
- Copy of a map showing area to be dredged, depth of cut, and proposed sediment sampling site, bathymetry of area to be dredged:
 - See attached map for proposed sediment sampling locations and cross sections for probing sediment depths. Exact locations may vary due to field conditions. Bathymetry of existing <u>Echo Lake</u> will be mapped during the sediment sampling work.
- Anticipated starting and completion dates of the proposed project:
 - Preliminary Design by September 2021

Sampling and Analysis Plan:

- Parameters to be analyzed for, including analytical methods and detection levels:
 - See highlighted rows in attached Table 1.
 - Planned sample and cross section locations:
 - We plan to collect sediment and lakebed samples at 2 locations (4 total samples) and collect only sediment samples at 2 additional locations (2 total samples). This will result in 4 total sediment samples and 2 total lakebed samples.
 - Along each cross-section line, a probe will be extended to the bottom of the impoundment to measure the top elevation of the bed. Then, the probe will be handpushed into the sediment until refusal to measure depth to 'hard bottom'.
 - Sampling methods and sample handling procedures:
 - \circ $\;$ Sampling will be done from a boat with a AMS multistage sampler.
 - Sampling will be completed in accordance with section 6.2 of the referenced document, Guidance for Applying the Sediment Sampling and Analysis Requirements of Chapter NR 347, Wisconsin Administrative Code.
 - Analytical laboratory certified under NR 149, Adm. Code to conduct parameter analysis.
 - Samples will be tested at a WI DNR approved lab.
 - Pace Analytical Services, LLC in Green Bay, WI.

Sediment Sample Plan Echo Lake

	Suggested Applytical Method	Suggest	ted Base
	Suggested Analytical Method	Parameter	r Analyses'
Parameter	(Suggested Detection Level)	Great Lakes	Inland Waters
	(mg/kg, dry weight unless hoted)	or Urban/ Industrial	(Rural/ Forested)
Inorganics - Metals			
Arsenic	SW-846 3050B/6010B	X	X
	EPA 6010 or 7060 (5)	**	· · ·
Barium	SW-846 3050B/6010B (0.2)		
Cadmium	SW-846 3050B/6010B EPA 7131 (0.6)	X	X
Chromium (total)	SW-846 3050B/6010B EPA 6010 or 7191 (0.6)	X	X
Copper	SW-846 3050B/6010B EPA 6010 or 7211 (0.5)	X	X
Cyanide	SW-846 9010B/9014 (0.4)		
Lead	SW-846 3050B/6010B EPA 6010 or 7421 (3)	X	X
Manganese	SW-846 3050B/6010B (0.1)		
Mercury	SW-846 7471A EPA 7471 (0.015)	X	X
Nickel	SW-846 3050B/6010B EPA 6010 (2)	X	X
Selenium	SW-846 3050B/6010B (8)	X	
Zinc	SW-846 3050B/6010B EPA 6010 or 7951 (2)	X	X
Inorganics – Nutrients	;		
Oil & Grease	SW-846 9070	X	
Total Phosphorus	EPA 365.2/365.3 or USGS I-6600-85 (9.9)	X	X
Nitrate + Nitrite	LACHAT 12-107-04-1-B (0.25)	X	X
Ammonia-Nitrogen	LACHAT 12-107-06-1-A (0.16)	X	X
Total Kjeldahl Nitrogen		X	X
Organics			
Aldrin	SW-846 8081		
	EPA 8081, 354440B, 3541 (0.01)		
Chlordane	SW-846 8081	Х	
	EPA 8081, 354440B, 3541 (0.009)		
Dieldrin	SW-846 8081		
	EPA 8081, 354440B, 3541 (0.01)		
Endrin	SW-846 8081		
	EPA 8081, 354440B, 3541 (0.01)		
Heptachlor	SW-846 8081		
	EPA 8081, 354440B, 3541 (0.01)		
Lindane (Gamma BHC)	SW-846 8081		
	EPA 8081, 354440B, 3541 (0.01)		

Table 1.	Sediment Sampling	Parameters with Suggested	d Methods and Analyses
----------	-------------------	----------------------------------	------------------------

¹ Suggested base parameter list reflects additions to NR347 Table 1, based on scientific research and experience with dredging projects.

		Suggest	ed Base
	Suggested Analytical Method	Parameter	[•] Analyses ¹
Parameter	(Suggested Detection Level) (mg/kg, dry weight unless noted)	Great Lakes or Urban/ Industrial	Inland Waters (Rural/ Forested)
DDT	SW-846 8081	X	
	EPA 8081, 354440B, 3541 (0.01)		
DDD & DDE	SW-846 8081	X	
	EPA 8081, 354440B, 3541 (0.01)		
Toxaphene	SW-846 8081 (0.01)		
PCBs (Total)	SW-846 8081	X	X
	EPA 8081 3540B 3541 (0.04)	Tied to Field	A diviganias
	EDA (2000) (1 - 10 m s/s)		Advisories
2,3,7,8-dioxin, $2,3,7,8$ -luran and $15,23,7,8$ -substituted dioxin	EPA 8290 (1 - 10 pg/g)		
and furan congeners			
Total Organic Carbon	SW 846 8081	V	X
	SW846-EPA 9060 (0.2%)		Δ
Polyayelia Aromatia	EDA 8210		
Hydrocarbons (PAHs)		<u>л</u>	
Naphthalene	(0.019)		
Phenanthrene	(0.017)		
Pyrene	(0.012)		
Fluorene	(0.058)		
2-Methylnapthelene			
Acenapthene	(0.017)		
Acenaphthlyene	(0.021)		
Anthracene	(0.0071)		
Benzo (a) anthracene	(0.019)		
Benzo (a) pyrene	(0.023)		
Benzo (e) pyrene			
Benzo (b) Iluorantnene	(0.032)		
Benzo (k) fluoranthene	(0.021)		
Chrysene	(0.021)		
Dibenzo(a,h)anthracene	(0.008)		
Fluoranthene	(0.029)		
Indeno (1,2,3-cd) pyrene	(0.034)		
Physical Tests			
Particle Size Analysis – Sieve	ASTM D-422 (%)	X	X
and Hydrometer Analysis			
Moisture Content	ASTM D-2216 (%)	X	X
Atterburg Limits (Liquid Limit and Plastic Limit)	ASTM D4318 (as moisture content)		
Specific Gravity	ASTM D-854 (Ratio, unitless)		

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

May 14, 2021

Robert Wayne AYRES & ASSOCIATES - EAU CLAIRE 3433 Oakwood Hills Parkway Eau Claire, WI 54701

RE: Project: ECHO LAKE Pace Project No.: 40226039

Dear Robert Wayne:

Enclosed are the analytical results for sample(s) received by the laboratory on April 30, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milenty

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: ECHO LAKE Pace Project No.: 40226039

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: ECHO LAKE Pace Project No.: 40226039

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40226039001	S1	Solid	04/29/21 13:00	04/30/21 07:30
40226039002	S2	Solid	04/29/21 13:00	04/30/21 07:30
40226039003	S3	Solid	04/29/21 13:00	04/30/21 07:30
40226039004	S4	Solid	04/29/21 13:00	04/30/21 07:30
40226039005	S5	Solid	04/29/21 13:00	04/30/21 07:30
40226039006	S6	Solid	04/29/21 13:00	04/30/21 07:30

SAMPLE ANALYTE COUNT

Project:ECHO LAKEPace Project No.:40226039

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40226039001	S1	EPA 8082	BLM	10	PASI-G
		EPA 6020	KXS	10	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	JJB	20	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		EPA 350.1	ТМК	1	PASI-G
		EPA 351.2	ТМК	1	PASI-G
		EPA 353.2	DAW	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060	TJJ	6	PASI-G
40226039002	S2	EPA 8082	BLM	10	PASI-G
		EPA 6020	KXS	10	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	JJB	20	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		EPA 350.1	ТМК	1	PASI-G
		EPA 351.2	ТМК	1	PASI-G
		EPA 353.2	DAW	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060	TJJ	6	PASI-G
40226039003	S3	ASTM D2974-87	AH	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
40226039004	S4	EPA 8082	BLM	10	PASI-G
		EPA 6020	KXS	10	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	JJB	20	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		EPA 350.1	ТМК	1	PASI-G
		EPA 351.2	ТМК	1	PASI-G
		EPA 353.2	DAW	1	PASI-G
		EPA 365.4	DAW	1	PASI-G
		EPA 9060	TJJ	6	PASI-G
40226039005	S5	EPA 8082	BLM	10	PASI-G
		EPA 6020	KXS	10	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	JJB	20	PASI-G
		ASTM D2974-87	AH	1	PASI-G

SAMPLE ANALYTE COUNT

Project: Pace Project No	ECHO LAKE b.: 40226039					
Lab ID	Sample ID	Method	Method Analysts			
		EPA 350.1	TMK	1	PASI-G	
		EPA 351.2	ТМК	1	PASI-G	
		EPA 353.2	DAW	1	PASI-G	
		EPA 365.4	DAW	1	PASI-G	
		EPA 9060	TJJ	6	PASI-G	
40226039006	S6	ASTM D2974-87	AH	1	PASI-G	
		EPA 365.4	DAW	1	PASI-G	

PASI-G = Pace Analytical Services - Green Bay

Project: ECHO LAKE

Pace Project No.: 40226039

 Sample:
 S1
 Lab ID:
 40226039001
 Collected:
 04/29/21 13:00
 Received:
 04/30/21 07:30
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EP	A 8082 Prepar	ration Meth	od: EPA	\ 3541			
	Pace Anal	ytical Servic	es - Green Bay	y					
PCB-1016 (Aroclor 1016)	<31.9	ug/kg	105	31.9	1	05/03/21 06:45	05/04/21 04:14	12674-11-2	
PCB-1221 (Aroclor 1221)	<31.9	ug/kg	105	31.9	1	05/03/21 06:45	05/04/21 04:14	11104-28-2	
PCB-1232 (Aroclor 1232)	<31.9	ug/kg	105	31.9	1	05/03/21 06:45	05/04/21 04:14	11141-16-5	
PCB-1242 (Aroclor 1242)	<31.9	ug/kg	105	31.9	1	05/03/21 06:45	05/04/21 04:14	53469-21-9	
PCB-1248 (Aroclor 1248)	<31.9	ug/kg	105	31.9	1	05/03/21 06:45	05/04/21 04:14	12672-29-6	
PCB-1254 (Aroclor 1254)	<31.9	ug/kg	105	31.9	1	05/03/21 06:45	05/04/21 04:14	11097-69-1	
PCB-1260 (Aroclor 1260)	<31.9	ug/kg	105	31.9	1	05/03/21 06:45	05/04/21 04:14	11096-82-5	
PCB, Total	<31.9	ug/kg	105	31.9	1	05/03/21 06:45	05/04/21 04:14	1336-36-3	
Surrogates		00							
Tetrachloro-m-xylene (S)	83	%	67-102		1	05/03/21 06:45	05/04/21 04:14	877-09-8	
Decachlorobiphenyl (S)	84	%	47-114		1	05/03/21 06:45	05/04/21 04:14	2051-24-3	
6020 MET ICPMS	Analytical	Method: EP	A 6020 Prepar	ration Meth	od: EPA	A 3050			
	Pace Anal	ytical Servic	es - Green Bay	у					
Arsenic	6.5	mg/kg	1.8	0.55	6.667	05/05/21 06:46	05/07/21 11:38	7440-38-2	
Barium	134	mg/kg	1.8	0.55	6.667	05/05/21 06:46	05/07/21 11:38	7440-39-3	
Cadmium	1.2J	mg/kg	1.4	0.20	6.667	05/05/21 06:46	05/07/21 11:38	7440-43-9	D3
Chromium	24.8	mg/kg	4.2	1.3	6.667	05/05/21 06:46	05/07/21 11:38	7440-47-3	
Copper	15.8	mg/kg	3.7	1.1	6.667	05/05/21 06:46	05/07/21 11:38	7440-50-8	
Lead	18.7	mg/kg	1.4	0.38	6.667	05/05/21 06:46	05/07/21 11:38	7439-92-1	
Manganese	744	mg/kg	11.5	3.5	20	05/05/21 06:46	05/11/21 09:10	7439-96-5	
Nickel	16.9	mg/kg	1.8	0.55	6.667	05/05/21 06:46	05/07/21 11:38	7440-02-0	
Selenium	3.7	mg/kg	1.4	0.38	6.667	05/05/21 06:46	05/07/21 11:38	7782-49-2	
Zinc	74.7	mg/kg	48.7	14.6	6.667	05/05/21 06:46	05/07/21 11:38	7440-66-6	
7471 Mercury	Analytical	Method: EP	A 7471 Prepar	ration Meth	od: EPA	A 7471			
	Pace Anal	ytical Servic	es - Green Bay	y					
Mercury	0.17	mg/kg	0.066	0.019	1	05/10/21 09:19	05/11/21 13:25	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EP	A 8270E by SII	M Prepara	tion Me	thod: EPA 3546			
	Pace Anal	ytical Servic	es - Green Bay	y					
Acenaphthene	<4.5	ug/kg	35.0	4.5	1	05/11/21 07:58	05/12/21 08:07	83-32-9	
Acenaphthylene	<4.4	ug/kg	35.0	4.4	1	05/11/21 07:58	05/12/21 08:07	208-96-8	
Anthracene	<4.3	ug/kg	35.0	4.3	1	05/11/21 07:58	05/12/21 08:07	120-12-7	
Benzo(a)anthracene	<4.5	ug/kg	35.0	4.5	1	05/11/21 07:58	05/12/21 08:07	56-55-3	
Benzo(a)pyrene	<4.0	ug/kg	35.0	4.0	1	05/11/21 07:58	05/12/21 08:07	50-32-8	
Benzo(b)fluoranthene	<4.9	ug/kg	35.0	4.9	1	05/11/21 07:58	05/12/21 08:07	205-99-2	
Benzo(e)pyrene	<4.1	ug/kg	35.0	4.1	1	05/11/21 07:58	05/12/21 08:07	192-97-2	
Benzo(g,h,i)perylene	<6.1	ug/kg	35.0	6.1	1	05/11/21 07:58	05/12/21 08:07	191-24-2	
Benzo(k)fluoranthene	<4.5	ug/kg	35.0	4.5	1	05/11/21 07:58	05/12/21 08:07	207-08-9	
Chrysene	<6.6	ug/kg	35.0	6.6	1	05/11/21 07:58	05/12/21 08:07	218-01-9	
Dibenz(a,h)anthracene	<4.8	ug/kg	35.0	4.8	1	05/11/21 07:58	05/12/21 08:07	53-70-3	
Fluoranthene	<4.1	ug/kg	35.0	4.1	1	05/11/21 07:58	05/12/21 08:07	206-44-0	
Fluorene	<4.2	ug/kg	35.0	4.2	1	05/11/21 07:58	05/12/21 08:07	86-73-7	

REPORT OF LABORATORY ANALYSIS

Project: ECHO LAKE

Pace Project No.: 40226039

 Sample: S1
 Lab ID: 40226039001
 Collected: 04/29/21 13:00
 Received: 04/30/21 07:30
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	Analytical	Method: EP/	A 8270E by SI	V Preparat	ion Me	ethod: EPA 3546			
	Pace Ana	ytical Service	es - Green Bay	/					
Indeno(1,2,3-cd)pyrene	<7.3	ug/kg	35.0	7.3	1	05/11/21 07:58	05/12/21 08:07	193-39-5	
1-Methylnaphthalene	<5.1	ug/kg	35.0	5.1	1	05/11/21 07:58	05/12/21 08:07	90-12-0	
Naphthalene	<3.4	ug/kg	35.0	3.4	1	05/11/21 07:58	05/12/21 08:07	91-20-3	
Phenanthrene	<4.0	ug/kg	35.0	4.0	1	05/11/21 07:58	05/12/21 08:07	85-01-8	
Pyrene	<5.1	ug/kg	35.0	5.1	1	05/11/21 07:58	05/12/21 08:07	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	52	%	36-86		1	05/11/21 07:58	05/12/21 08:07	321-60-8	
Terphenyl-d14 (S)	64	%	41-97		1	05/11/21 07:58	05/12/21 08:07	1718-51-0	
Percent Moisture	Analytical	Method: AS	FM D2974-87						
	Pace Ana	ytical Service	es - Green Bay	/					
Percent Moisture	52.2	%	0.10	0.10	1		04/30/21 11:44		
350.1 Ammonia	Analytical	Method: EPA	A350.1 Prepa	ration Meth	od: EF	PA 350.1			
	Pace Ana	vtical Service	es - Green Bay	/					
Nitrogon Ammonia	202	ma/ka	13.8	′ 12.1	1	05/06/21 17:20	05/06/21 18:56	7664 41 7	
Nillogen, Ammonia	295	шу/ку	43.0	15.1	1	03/00/21 17.20	03/00/21 10:50	7004-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Pace Ana	Method: EPA	A 351.2 Prepa es - Green Bay	ration Meth /	od: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	4380	mg/kg	371	78.6	2	05/04/21 14:20	05/05/21 15:05	7727-37-9	P6
353.2 Nitrogen, NO2/NO3	Analytical	Method: EPA	A 353.2 Prepa	ration Meth	od: EF	PA 353.2			
	Pace Ana	ytical Service	es - Green Bay	/					
Nitrogen, NO2 plus NO3	<2.0	mg/kg	6.6	2.0	1	05/10/21 12:00	05/11/21 14:26		
365.4 Total Phosphorus	Analytical	Method: EPA	A365.4 Prepa	ration Meth	od: EF	PA 365.4			
	Pace Ana	ytical Service	es - Green Bay	/					
Phosphorus	965	mg/kg	41.7	6.1	1	05/03/21 10:25	05/03/21 16:05	7723-14-0	
Total Organic Carbon Quad	Analytical	Method: EP/	A 9060						
	Pace Ana	ytical Service	es - Green Bay	/					
Total Organic Carbon	48000	mg/kg	8210	2460	1		05/14/21 03:42	7440-44-0	
Total Organic Carbon	46900	mg/kg	8000	2400	1		05/14/21 03:47	7440-44-0	
Total Organic Carbon	45700	mg/kg	8390	2520	1		05/14/21 03:52	7440-44-0	
Total Organic Carbon	47100	mg/kg	8460	2540	1		05/14/21 03:58	7440-44-0	
Mean Total Organic Carbon	46900	mg/kg	8270	2480	1		05/14/21 03:42	7440-44-0	
Surrogates									
RSD%	2.0	%			1		05/14/21 03:42		

Project: ECHO LAKE

Pace Project No.: 40226039

 Sample: S2
 Lab ID: 40226039002
 Collected: 04/29/21 13:00
 Received: 04/30/21 07:30
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EP	A 8082 Prepai	ration Meth	od: EPA	3541			
	Pace Anal	ytical Servic	es - Green Bay	y					
PCB-1016 (Aroclor 1016)	<40.0	ug/kg	131	40.0	1	05/03/21 06:45	05/04/21 04:38	12674-11-2	
PCB-1221 (Aroclor 1221)	<40.0	ug/kg	131	40.0	1	05/03/21 06:45	05/04/21 04:38	11104-28-2	
PCB-1232 (Aroclor 1232)	<40.0	ug/kg	131	40.0	1	05/03/21 06:45	05/04/21 04:38	11141-16-5	
PCB-1242 (Aroclor 1242)	<40.0	ug/kg	131	40.0	1	05/03/21 06:45	05/04/21 04:38	53469-21-9	
PCB-1248 (Aroclor 1248)	<40.0	ug/kg	131	40.0	1	05/03/21 06:45	05/04/21 04:38	12672-29-6	
PCB-1254 (Aroclor 1254)	<40.0	ug/kg	131	40.0	1	05/03/21 06:45	05/04/21 04:38	11097-69-1	
PCB-1260 (Aroclor 1260)	<40.0	ug/kg	131	40.0	1	05/03/21 06:45	05/04/21 04:38	11096-82-5	
PCB, Total	<40.0	ug/kg	131	40.0	1	05/03/21 06:45	05/04/21 04:38	1336-36-3	
Surrogates									
Tetrachloro-m-xylene (S)	84	%	67-102		1	05/03/21 06:45	05/04/21 04:38	877-09-8	
Decachlorobiphenyl (S)	86	%	47-114		1	05/03/21 06:45	05/04/21 04:38	2051-24-3	
6020 MET ICPMS	Analytical	Method: EP	A 6020 Prepai	ration Meth	od: EPA	A 3050			
	Pace Anal	ytical Servic	es - Green Bay	y					
Arsenic	7.0	mg/kg	2.3	0.68	6.667	05/05/21 06:46	05/07/21 12:21	7440-38-2	
Barium	97.0	mg/kg	2.2	0.67	6.667	05/05/21 06:46	05/07/21 12:21	7440-39-3	
Cadmium	1.3J	mg/kg	1.7	0.25	6.667	05/05/21 06:46	05/07/21 12:21	7440-43-9	D3
Chromium	51.1	mg/kg	5.2	1.6	6.667	05/05/21 06:46	05/07/21 12:21	7440-47-3	
Copper	15.1	mg/kg	4.6	1.4	6.667	05/05/21 06:46	05/07/21 12:21	7440-50-8	
Lead	18.1	mg/kg	1.7	0.46	6.667	05/05/21 06:46	05/07/21 12:21	7439-92-1	
Manganese	477	mg/kg	4.7	1.4	6.667	05/05/21 06:46	05/07/21 12:21	7439-96-5	
Nickel	56.6	mg/kg	2.3	0.67	6.667	05/05/21 06:46	05/07/21 12:21	7440-02-0	
Selenium	3.1	mg/kg	1.7	0.47	6.667	05/05/21 06:46	05/07/21 12:21	7782-49-2	
Zinc	63.5	mg/kg	59.5	17.8	6.667	05/05/21 06:46	05/07/21 12:21	7440-66-6	
7471 Mercury	Analytical	Method: EP	A 7471 Prepai	ration Meth	od: EPA	A 7471			
	Pace Anal	ytical Servic	es - Green Ba	y					
Mercury	0.18	mg/kg	0.088	0.025	1	05/10/21 09:19	05/11/21 13:28	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EP	A 8270E by SII	M Prepara	tion Me	thod: EPA 3546			
	Pace Anal	ytical Servic	es - Green Ba	y					
Acenaphthene	<5.7	ug/kg	43.8	5.7	1	05/11/21 07:58	05/12/21 08:24	83-32-9	
Acenaphthylene	<5.5	ug/kg	43.8	5.5	1	05/11/21 07:58	05/12/21 08:24	208-96-8	
Anthracene	5.4J	ug/kg	43.8	5.4	1	05/11/21 07:58	05/12/21 08:24	120-12-7	
Benzo(a)anthracene	24.1J	ug/kg	43.8	5.7	1	05/11/21 07:58	05/12/21 08:24	56-55-3	
Benzo(a)pyrene	20.2J	ug/kg	43.8	5.0	1	05/11/21 07:58	05/12/21 08:24	50-32-8	
Benzo(b)fluoranthene	25.0J	ug/kg	43.8	6.1	1	05/11/21 07:58	05/12/21 08:24	205-99-2	
Benzo(e)pyrene	14.3J	ug/kg	43.8	5.1	1	05/11/21 07:58	05/12/21 08:24	192-97-2	
Benzo(g,h,i)perylene	12.9J	ug/kg	43.8	7.7	1	05/11/21 07:58	05/12/21 08:24	191-24-2	
Benzo(k)fluoranthene	13.7J	ug/kg	43.8	5.6	1	05/11/21 07:58	05/12/21 08:24	207-08-9	
Chrysene	24.8J	ug/kg	43.8	8.3	1	05/11/21 07:58	05/12/21 08:24	218-01-9	
Dibenz(a,h)anthracene	<6.1	ug/kg	43.8	6.1	1	05/11/21 07:58	05/12/21 08:24	53-70-3	
Fluoranthene	54.8	ug/kg	43.8	5.2	1	05/11/21 07:58	05/12/21 08:24	206-44-0	
Fluorene	<5.2	ug/kg	43.8	5.2	1	05/11/21 07:58	05/12/21 08:24	86-73-7	

Project: ECHO LAKE

Pace Project No.: 40226039

 Sample:
 S2
 Lab ID:
 40226039002
 Collected:
 04/29/21 13:00
 Received:
 04/30/21 07:30
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SI	M Preparat	tion Me	ethod: EPA 3546			
	Face Anal	iyiical Service	es - Gleen Da	у					
Indeno(1,2,3-cd)pyrene	11.5J	ug/kg	43.8	9.1	1	05/11/21 07:58	05/12/21 08:24	193-39-5	
1-Methylnaphthalene	<6.4	ug/kg	43.8	6.4	1	05/11/21 07:58	05/12/21 08:24	90-12-0	
Naphthalene	<4.3	ug/kg	43.8	4.3	1	05/11/21 07:58	05/12/21 08:24	91-20-3	
Phenanthrene	32.8J	ug/kg	43.8	5.0	1	05/11/21 07:58	05/12/21 08:24	85-01-8	
Pyrene Surrogates	45.0	ug/kg	43.8	6.4	1	05/11/21 07:58	05/12/21 08:24	129-00-0	
2-Fluorobinhenvl (S)	58	%	36-86		1	05/11/21 07:58	05/12/21 08.24	321-60-8	
Terphenyl-d14 (S)	65	%	41-97		1	05/11/21 07:58	05/12/21 08:24	1718-51-0	
Percent Moisture	Analytical Pace Anal	Method: AST	ΓM D2974-87 es - Green Ba	у					
Percent Moisture	61.9	%	0.10	0.10	1		04/30/21 11:44		
350.1 Ammonia	Analytical Pace Anal	Method: EPA	A 350.1 Prepa es - Green Bay	aration Meth y	nod: EF	PA 350.1			
Nitrogen, Ammonia	621	mg/kg	53.3	16.0	1	05/06/21 17:20	05/06/21 18:56	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Pace Anal	Method: EPA	A 351.2 Prepa es - Green Bay	aration Meth y	nod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	5090	mg/kg	473	100	2	05/04/21 14:20	05/05/21 15:07	7727-37-9	
353.2 Nitrogen, NO2/NO3	Analytical Pace Anal	Method: EPA	A 353.2 Prepa es - Green Ba	aration Meth y	nod: EF	PA 353.2			
Nitrogen, NO2 plus NO3	<2.5	mg/kg	8.3	2.5	1	05/10/21 12:00	05/11/21 14:27		
365.4 Total Phosphorus	Analytical Pace Anal	Method: EPA	A 365.4 Prepa es - Green Ba	aration Meth y	nod: EF	PA 365.4			
Phosphorus	1330	mg/kg	47.9	7.0	1	05/03/21 10:25	05/03/21 16:06	7723-14-0	
Total Organic Carbon Quad	Analytical Pace Anal	Method: EPA	A 9060 es - Green Bag	у					
Total Organic Carbon	61800	mg/kg	8870	2660	1		05/14/21 04:49	7440-44-0	
Total Organic Carbon	60400	mg/kg	8880	2660	1		05/14/21 04:55	7440-44-0	
Total Organic Carbon	64500	mg/kg	8520	2560	1		05/14/21 05:00	7440-44-0	
Total Organic Carbon	78200	mg/kg	8840	2650	1		05/14/21 05:06	7440-44-0	
Mean Total Organic Carbon	66200	mg/kg	8780	2630	1		05/14/21 04:49	7440-44-0	
RSD%	12.3	%			1		05/14/21 04:49		

Project: ECHO LAKE

Pace Project No.: 40226039

Sample: S3	Lab ID: 4	10226039003	Collected	d: 04/29/21	13:00	Received: 04/	30/21 07:30 Ma	atrix: Solid	
Results reported on a "dry weight" b	oasis and are	adjusted for p	percent mo	oisture, san	nple si	ize and any diluti	ons.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical M Pace Analy	/lethod: ASTM tical Services ·	D2974-87 - Green Bay	y					
Percent Moisture	71.0	%	0.10	0.10	1		04/30/21 11:44		
365.4 Total Phosphorus	Analytical M Pace Analy	/lethod: EPA 36 tical Services -	65.4 Prepa Green Bay	ration Meth y	od: EP	A 365.4			
Phosphorus	1710	mg/kg	60.5	8.9	1	05/03/21 10:25	05/03/21 16:07	7723-14-0	

Project: ECHO LAKE

Pace Project No.: 40226039

 Sample:
 S4
 Lab ID:
 40226039004
 Collected:
 04/29/21
 13:00
 Received:
 04/30/21
 07:30
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EP/	A 8082 Prepar	ration Meth	nod: EPA	3541			
	Pace Anal	ytical Servic	es - Green Bay	y					
PCB-1016 (Aroclor 1016)	<30.4	ug/kg	100	30.4	1	05/03/21 06:45	05/04/21 05:51	12674-11-2	
PCB-1221 (Aroclor 1221)	<30.4	ug/kg	100	30.4	1	05/03/21 06:45	05/04/21 05:51	11104-28-2	
PCB-1232 (Aroclor 1232)	<30.4	ug/kg	100	30.4	1	05/03/21 06:45	05/04/21 05:51	11141-16-5	
PCB-1242 (Aroclor 1242)	<30.4	ug/kg	100	30.4	1	05/03/21 06:45	05/04/21 05:51	53469-21-9	
PCB-1248 (Aroclor 1248)	<30.4	ug/kg	100	30.4	1	05/03/21 06:45	05/04/21 05:51	12672-29-6	
PCB-1254 (Aroclor 1254)	<30.4	ug/kg	100	30.4	1	05/03/21 06:45	05/04/21 05:51	11097-69-1	
PCB-1260 (Aroclor 1260)	<30.4	ug/kg	100	30.4	1	05/03/21 06:45	05/04/21 05:51	11096-82-5	
PCB, Total	<30.4	uq/kq	100	30.4	1	05/03/21 06:45	05/04/21 05:51	1336-36-3	
Surrogates		0 0							
Tetrachloro-m-xylene (S)	85	%	67-102		1	05/03/21 06:45	05/04/21 05:51	877-09-8	
Decachlorobiphenyl (S)	90	%	47-114		1	05/03/21 06:45	05/04/21 05:51	2051-24-3	
6020 MET ICPMS	Analytical	Method: EP/	A 6020 Prepar	ration Meth	nod: EPA	A 3050			
	Pace Anal	ytical Servic	es - Green Bay	y					
Arsenic	5.5	mg/kg	1.6	0.49	6.667	05/05/21 06:46	05/07/21 12:35	7440-38-2	
Barium	134	mg/kg	1.6	0.49	6.667	05/05/21 06:46	05/07/21 12:35	7440-39-3	
Cadmium	0.58J	mg/kg	1.2	0.18	6.667	05/05/21 06:46	05/07/21 12:35	7440-43-9	D3
Chromium	23.7	mg/kg	3.7	1.1	6.667	05/05/21 06:46	05/07/21 12:35	7440-47-3	
Copper	16.5	mg/kg	3.3	0.99	6.667	05/05/21 06:46	05/07/21 12:35	7440-50-8	
Lead	24.3	mg/kg	1.2	0.34	6.667	05/05/21 06:46	05/07/21 12:35	7439-92-1	
Manganese	654	mg/kg	3.4	1.0	6.667	05/05/21 06:46	05/07/21 12:35	7439-96-5	
Nickel	16.6	mg/kg	1.6	0.49	6.667	05/05/21 06:46	05/07/21 12:35	7440-02-0	
Selenium	2.9	mg/kg	1.2	0.34	6.667	05/05/21 06:46	05/07/21 12:35	7782-49-2	
Zinc	79.6	mg/kg	43.0	12.9	6.667	05/05/21 06:46	05/07/21 12:35	7440-66-6	
7471 Mercury	Analytical	Method: EP	A7471 Prepar	ration Meth	nod: EPA	A 7471			
	Pace Anal	ytical Servic	es - Green Bay	y					
Mercury	0.21	mg/kg	0.069	0.020	1	05/10/21 09:19	05/11/21 13:30	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EP/	A 8270E by SI	M Prepara	tion Me	thod: EPA 3546			
	Pace Anal	ytical Servic	es - Green Bay	y					
Acenaphthene	<4.3	ug/kg	33.4	4.3	1	05/11/21 07:58	05/12/21 22:12	83-32-9	
Acenaphthylene	5.5J	ug/kg	33.4	4.2	1	05/11/21 07:58	05/12/21 22:12	208-96-8	
Anthracene	5.6J	ug/kg	33.4	4.1	1	05/11/21 07:58	05/12/21 22:12	120-12-7	
Benzo(a)anthracene	9.8J	ug/kg	33.4	4.3	1	05/11/21 07:58	05/12/21 22:12	56-55-3	
Benzo(a)pyrene	5.5J	ug/kg	33.4	3.8	1	05/11/21 07:58	05/12/21 22:12	50-32-8	
Benzo(b)fluoranthene	10.3J	ug/kg	33.4	4.6	1	05/11/21 07:58	05/12/21 22:12	205-99-2	
Benzo(e)pyrene	5.5J	ug/kg	33.4	3.9	1	05/11/21 07:58	05/12/21 22:12	192-97-2	
Benzo(g,h,i)perylene	<5.9	ug/kg	33.4	5.9	1	05/11/21 07:58	05/12/21 22:12	191-24-2	
Benzo(k)fluoranthene	4.5J	ug/kg	33.4	4.3	1	05/11/21 07:58	05/12/21 22:12	207-08-9	
Chrysene	9.5J	ug/kg	33.4	6.3	1	05/11/21 07:58	05/12/21 22:12	218-01-9	
Dibenz(a,h)anthracene	<4.6	ug/kg	33.4	4.6	1	05/11/21 07:58	05/12/21 22:12	53-70-3	
Fluoranthene	28.2J	ug/kg	33.4	4.0	1	05/11/21 07:58	05/12/21 22:12	206-44-0	
Fluorene	9.4J	ug/kg	33.4	4.0	1	05/11/21 07:58	05/12/21 22:12	86-73-7	

Project: ECHO LAKE

Pace Project No.: 40226039

 Sample:
 S4
 Lab ID: 40226039004
 Collected: 04/29/21 13:00
 Received: 04/30/21 07:30
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SII	M Preparat	ion Me	ethod: EPA 3546			
	Pace Ana	lytical Service	es - Green Ba	y					
Indeno(1,2,3-cd)pyrene	<7.0	ug/kg	33.4	7.0	1	05/11/21 07:58	05/12/21 22:12	193-39-5	
1-Methylnaphthalene	24.3J	ug/kg	33.4	4.9	1	05/11/21 07:58	05/12/21 22:12	90-12-0	
Naphthalene	23.2J	ug/kg	33.4	3.3	1	05/11/21 07:58	05/12/21 22:12	91-20-3	
Phenanthrene	24.2J	ug/kg	33.4	3.8	1	05/11/21 07:58	05/12/21 22:12	85-01-8	
Pyrene	22.3J	ug/kg	33.4	4.9	1	05/11/21 07:58	05/12/21 22:12	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	54	%	36-86		1	05/11/21 07:58	05/12/21 22:12	321-60-8	
Terphenyl-d14 (S)	52	%	41-97		1	05/11/21 07:58	05/12/21 22:12	1718-51-0	
Percent Moisture	Analytical	Method: AST	FM D2974-87						
	Pace Ana	lytical Service	es - Green Ba	y					
Percent Moisture	50.0	%	0.10	0.10	1		04/30/21 11:44		
350.1 Ammonia	Analytical	Method: EPA	A 350.1 Prepa	ration Meth	od: EF	PA 350.1			
	Pace Ana	lytical Service	es - Green Ba	y					
Nitrogen, Ammonia	468	mg/kg	41.9	12.6	1	05/06/21 17:20	05/06/21 18:57	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	A 351.2 Prepa	ration Meth	iod: EF	PA 351.2			
	Pace Ana	lytical Service	es - Green Bay	y					
Nitrogen, Kjeldahl, Total	4360	mg/kg	352	74.7	2	05/04/21 14:20	05/05/21 15:08	7727-37-9	
353.2 Nitrogen, NO2/NO3	Analytical	Method: EPA	A 353.2 Prepa	ration Meth	od: EF	PA 353.2			
	Pace Ana	lytical Service	es - Green Bay	y					
Nitrogen, NO2 plus NO3	<1.9	mg/kg	6.2	1.9	1	05/10/21 12:00	05/11/21 14:28		
365 4 Total Phosphorus	Analytical	Method: EP4	365.4 Prena	ration Meth	od. Et	PA 365 4			
	Pace Anal	lvtical Service	es - Green Ba		100. LI	A 000.4			
Phosphorus	738	mg/kg	28.7	, 4.2	1	05/03/21 10:25	05/03/21 16:09	7723-14-0	
Total Organia Carbon Organ	Applytical	Mothod: ED/	0060						
Total Organic Carbon Quad	Analytical Doop App	Intical Sorvior							
	Face Ana	iyiical Service	es - Green Da	y					
Total Organic Carbon	52000	mg/kg	6480	1940	1		05/14/21 05:12	7440-44-0	
Total Organic Carbon	49900	mg/kg	6490	1950	1		05/14/21 05:18	7440-44-0	
Total Organic Carbon	52400	mg/kg	6580	1970	1		05/14/21 05:23	7440-44-0	
Total Organic Carbon	55300	mg/kg	6760	2030	1		05/14/21 05:29	7440-44-0	
Mean Total Organic Carbon	52400	mg/kg	6570	1970	1		05/14/21 05:12	7440-44-0	
Surrogates		0/					05/44/04 05 40		
KSD%	4.2	%			1		05/14/21 05:12		

Project: ECHO LAKE

Pace Project No.: 40226039

 Sample:
 S5
 Lab ID:
 40226039005
 Collected:
 04/29/21 13:00
 Received:
 04/30/21 07:30
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EP	A 8082 Prepar	ration Meth	od: EPA	3541			
	Pace Anal	ytical Servic	es - Green Bay	y					
PCB-1016 (Aroclor 1016)	<30.9	ug/kg	102	30.9	1	05/03/21 06:45	05/04/21 06:15	12674-11-2	
PCB-1221 (Aroclor 1221)	<30.9	ug/kg	102	30.9	1	05/03/21 06:45	05/04/21 06:15	11104-28-2	
PCB-1232 (Aroclor 1232)	<30.9	ug/kg	102	30.9	1	05/03/21 06:45	05/04/21 06:15	11141-16-5	
PCB-1242 (Aroclor 1242)	<30.9	ug/kg	102	30.9	1	05/03/21 06:45	05/04/21 06:15	53469-21-9	
PCB-1248 (Aroclor 1248)	<30.9	ug/kg	102	30.9	1	05/03/21 06:45	05/04/21 06:15	12672-29-6	
PCB-1254 (Aroclor 1254)	<30.9	ug/kg	102	30.9	1	05/03/21 06:45	05/04/21 06:15	11097-69-1	
PCB-1260 (Aroclor 1260)	<30.9	ug/kg	102	30.9	1	05/03/21 06:45	05/04/21 06:15	11096-82-5	
PCB, Total	<30.9	ug/kg	102	30.9	1	05/03/21 06:45	05/04/21 06:15	1336-36-3	
Surrogates		00							
Tetrachloro-m-xylene (S)	83	%	67-102		1	05/03/21 06:45	05/04/21 06:15	877-09-8	
Decachlorobiphenyl (S)	78	%	47-114		1	05/03/21 06:45	05/04/21 06:15	2051-24-3	
6020 MET ICPMS	Analytical	Method: EP	A 6020 Prepar	ration Meth	od: EPA	A 3050			
	Pace Anal	ytical Servic	es - Green Bay	y					
Arsenic	8.0	mg/kg	1.7	0.52	6.667	05/05/21 06:46	05/07/21 12:42	7440-38-2	
Barium	109	mg/kg	1.7	0.52	6.667	05/05/21 06:46	05/07/21 12:42	7440-39-3	
Cadmium	0.48J	ma/ka	1.3	0.19	6.667	05/05/21 06:46	05/07/21 12:42	7440-43-9	D3
Chromium	26.9	mg/kg	4.0	1.2	6.667	05/05/21 06:46	05/07/21 12:42	7440-47-3	
Copper	16.1	ma/ka	3.5	1.1	6.667	05/05/21 06:46	05/07/21 12:42	7440-50-8	
Lead	26.9	mg/kg	1.3	0.36	6.667	05/05/21 06:46	05/07/21 12:42	7439-92-1	
Manganese	473	mg/kg	3.6	1.1	6.667	05/05/21 06:46	05/07/21 12:42	7439-96-5	
Nickel	27.5	mg/kg	1.7	0.52	6.667	05/05/21 06:46	05/07/21 12:42	7440-02-0	
Selenium	2.7	mg/kg	1.3	0.36	6.667	05/05/21 06:46	05/07/21 12:42	7782-49-2	
Zinc	76.0	mg/kg	46.0	13.8	6.667	05/05/21 06:46	05/07/21 12:42	7440-66-6	
7471 Mercury	Analytical	Method: EP	A 7471 Prepar	ration Meth	od: EPA	A 7471			
	Pace Anal	ytical Servic	es - Green Bay	y					
Mercury	0.19	mg/kg	0.071	0.020	1	05/10/21 09:19	05/11/21 13:32	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EP	A 8270E by SI	M Prepara	tion Me	thod: EPA 3546			
	Pace Anal	ytical Servic	es - Green Bay	y					
Acenaphthene	<4.4	ug/kg	33.9	4.4	1	05/11/21 07:58	05/12/21 22:29	83-32-9	
Acenaphthylene	<4.3	ug/kg	33.9	4.3	1	05/11/21 07:58	05/12/21 22:29	208-96-8	
Anthracene	5.6J	ug/kg	33.9	4.2	1	05/11/21 07:58	05/12/21 22:29	120-12-7	
Benzo(a)anthracene	35.0	ug/kg	33.9	4.4	1	05/11/21 07:58	05/12/21 22:29	56-55-3	
Benzo(a)pyrene	35.6	ug/kg	33.9	3.9	1	05/11/21 07:58	05/12/21 22:29	50-32-8	
Benzo(b)fluoranthene	51.1	ug/kg	33.9	4.7	1	05/11/21 07:58	05/12/21 22:29	205-99-2	
Benzo(e)pyrene	25.8J	ug/kg	33.9	4.0	1	05/11/21 07:58	05/12/21 22:29	192-97-2	
Benzo(g,h,i)perylene	23.4J	ug/kg	33.9	6.0	1	05/11/21 07:58	05/12/21 22:29	191-24-2	
Benzo(k)fluoranthene	18.2J	ug/kg	33.9	4.3	1	05/11/21 07:58	05/12/21 22:29	207-08-9	
Chrysene	40.2	ug/kg	33.9	6.4	1	05/11/21 07:58	05/12/21 22:29	218-01-9	
Dibenz(a,h)anthracene	7.4J	ug/kg	33.9	4.7	1	05/11/21 07:58	05/12/21 22:29	53-70-3	
Fluoranthene	85.9	ug/kg	33.9	4.0	1	05/11/21 07:58	05/12/21 22:29	206-44-0	
Fluorene	<4.1	ug/kg	33.9	4.1	1	05/11/21 07:58	05/12/21 22:29	86-73-7	

REPORT OF LABORATORY ANALYSIS

Project: ECHO LAKE

Pace Project No.: 40226039

 Sample: S5
 Lab ID: 40226039005
 Collected: 04/29/21 13:00
 Received: 04/30/21 07:30
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Vertical Solid
 Vertical Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SI	M Preparat	ion Me	ethod: EPA 3546			
	Pace Ana	ytical Service	es - Green Bay	/					
Indeno(1,2,3-cd)pyrene	22.0J	ug/kg	33.9	7.1	1	05/11/21 07:58	05/12/21 22:29	193-39-5	
1-Methylnaphthalene	<5.0	ug/kg	33.9	5.0	1	05/11/21 07:58	05/12/21 22:29	90-12-0	
Naphthalene	<3.3	ug/kg	33.9	3.3	1	05/11/21 07:58	05/12/21 22:29	91-20-3	
Phenanthrene	38.6	ug/kg	33.9	3.9	1	05/11/21 07:58	05/12/21 22:29	85-01-8	
Pyrene	69.7	ug/kg	33.9	5.0	1	05/11/21 07:58	05/12/21 22:29	129-00-0	
Surrogates		•							
2-Fluorobiphenyl (S)	64	%	36-86		1	05/11/21 07:58	05/12/21 22:29	321-60-8	
Terphenyl-d14 (S)	71	%	41-97		1	05/11/21 07:58	05/12/21 22:29	1718-51-0	
Percent Moisture	Analytical	Method: AS	FM D2974-87						
	Pace Ana	ytical Service	es - Green Bay	/					
Percent Moisture	50.8	%	0.10	0.10	1		04/30/21 11:44		
350.1 Ammonia	Analvtical	Method: EP/	A350.1 Prepa	ration Meth	od: EF	PA 350.1			
	Pace Ana	vtical Service	es - Green Bay	/					
Nitrogen, Ammonia	264	mg/kg	38.7	, 11.6	1	05/06/21 17:20	05/06/21 19:00	7664-41-7	
251 2 Total Kieldehl Nitzegen	Apolytical	Mothod: ED/	1251 2 Dropo	ration Math	od. El	04 251 2			
551.2 Total Kjeldalli Nitrogeli	Pace Ana	lytical Service	es - Green Bay	/	ou. Lr	-A 331.2			
Nitrogen, Kjeldahl, Total	4000	mg/kg	389	82.4	2	05/04/21 14:20	05/05/21 15:11	7727-37-9	
353.2 Nitrogen, NO2/NO3	Analytical	Method: EPA	A 353.2 Prepa	ration Meth	od: EF	PA 353.2			
	Pace Ana	ytical Service	es - Green Bay	/					
Nitrogen, NO2 plus NO3	<1.9	mg/kg	6.4	1.9	1	05/10/21 12:00	05/11/21 14:28		
365.4 Total Phosphorus	Analytical	Method: EPA	A365.4 Prepa	ration Meth	od: EF	PA 365.4			
	Pace Ana	ytical Service	es - Green Bay	/					
Phosphorus	803	mg/kg	31.5	4.6	1	05/03/21 10:25	05/03/21 16:10	7723-14-0	
Total Organic Carbon Quad	Analytical	Method: EP/	A 9060						
J	Pace Ana	ytical Service	es - Green Bay	/					
Total Organic Carbon	45800	mg/kg	6880	2060	1		05/14/21 05:35	7440-44-0	
Total Organic Carbon	45800	mg/kg	6600	1980	1		05/14/21 05:40	7440-44-0	
Total Organic Carbon	47400	mg/kg	6680	2000	1		05/14/21 05:46	7440-44-0	
Total Organic Carbon	46300	mg/kg	6860	2060	1		05/14/21 05:51	7440-44-0	
Mean Total Organic Carbon	46300	mg/kg	6760	2030	1		05/14/21 05:35	7440-44-0	
Surrogates									
RSD%	1.6	%			1		05/14/21 05:35		

Project: ECHO LAKE

Pace Project No.: 40226039

Sample: S6	Lab ID: 4	0226039006	Collected	1: 04/29/21	13:00	Received: 04/	30/21 07:30 Ma	atrix: Solid	
Results reported on a "dry weight" b	basis and are	adjusted for p	percent mo	oisture, san	nple si	ze and any diluti	ons.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical M Pace Analy	lethod: ASTM tical Services -	D2974-87 · Green Bay	1					
Percent Moisture	43.8	%	0.10	0.10	1		04/30/21 11:44		
365.4 Total Phosphorus	Analytical M Pace Analy	1ethod: EPA 36 tical Services -	65.4 Prepa Green Bay	ration Meth /	od: EP	A 365.4			
Phosphorus	873	mg/kg	35.1	5.2	1	05/03/21 10:25	05/03/21 16:11	7723-14-0	

Project:	ECHO LAKE											
Pace Project No.:	40226039											
QC Batch:	384605		Anal	ysis Metho	d:	EPA 7471						
QC Batch Method:	EPA 7471		Anal	ysis Descri	ption:	7471 Mercu	ry					
			Labo	oratory:		Pace Analyt	ical Servic	es - Green	Bay			
Associated Lab Sar	mples: 4022603	39001, 402260390	02, 4022603	39004, 402	26039005							
METHOD BLANK:	2218652			Matrix: S	olid							
Associated Lab Sar	mples: 402260	39001, 402260390	02, 4022603	39004, 402	26039005							
			Blai	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	zed	Qualifier	s			
Mercury		mg/kg		0.010J	0.03	35 05/11/2 ⁻	12:27					
LABORATORY CO	NTROL SAMPLE	2218653										
			Spike	LC	S	LCS	% R	ec				
Parar	neter	Units	Conc.	Re	sult	% Rec	Lim	its	Qualifiers	_		
Mercury		mg/kg	3.0	33	0.81	97	7	85-115				
MATRIX SPIKE & M	ATRIX SPIKE D	JPLICATE: 2218	3654		221865	5						
			MS	MSD								
		40225904001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	A 1
Paramete	r Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	mg	/kg 0.013J	0.84	0.85	0.81	0.83	96	97	85-115	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	ECHO	LAKE												
Pace Project No.:	40226	039												
QC Batch:	3842	.93		Analy	vsis Meth	od:	EPA 602	20						
QC Batch Method:	EPA	3050		Analy	, vsis Desc	ription:	6020 ME	ΞT						
				Labo	ratory.		Pace An	alvtica	al Servic	es - Green	Bay			
Associated Lab Sar	nples:	402260390	001, 4022603900	2, 4022603	39004, 40	226039005		larytice			Buy			
METHOD BLANK:	22168	79			Matrix:	Solid								
Associated Lab Sar	nples:	402260390	001, 4022603900	2, 4022603	39004, 40	226039005								
				Blai	nk	Reporting								
Parar	neter		Units	Res	ult	Limit	A	nalyze	ed	Qualifier	S			
Arsenic			mg/kg		<0.040	0.1	3 05/0	7/21 1	1:23					
Barium			mg/kg		<0.039	0.1	3 05/0	7/21 1	1:23					
Cadmium			mg/kg		<0.015	0.1	0 05/0	7/21 1	1:23					
Chromium			mg/kg		<0.091	0.3	0 05/0	7/21 1	1:23					
Copper			mg/kg		<0.080	0.2	7 05/0	7/21 1	1:23					
Lead			mg/kg		<0.027	0.1	0 05/0	7/21 1	1:23					
Manganese			mg/kg		<0.083	0.2	8 05/0	7/21 1	1:23					
Nickel			mg/kg		<0.040	0.1	3 05/0	7/21 1	1:23					
Selenium			mg/kg		<0.027	0.1	0 05/0	7/21 1	1:23					
Zinc			mg/kg		<1.0	3	5 05/0	7/21 1	1:23					
LABORATORY CO	NTROL	SAMPLE:	2216880											
				Spike	L	.CS	LCS		% R	ec				
Parar	neter		Units	Conc.	R	esult	% Rec	;	Lim	its	Qualifiers			
Arsenic			mg/kg	5	50	48.9		98		80-120				
Barium			mg/kg	5	50	48.8		98		80-120				
Cadmium			mg/kg	5	50	50.9		102	i	80-120				
Chromium			mg/kg	5	50	47.9		96		80-120				
Copper			mg/kg	5	50	49.5		99		80-120				
Lead			mg/kg	5	50	48.0		96		80-120				
Manganese			mg/kg	5	50	47.0		94		80-120				
Nickel			mg/kg	5	50	48.5		97		80-120				
Selenium			mg/kg	5	50	50.2		100		80-120				
Zinc			mg/kg	5	50	50.2		100		80-120				
				004		004000	<u></u>							
WAIKIA SPIKE & N	AIRIX	SPIKE DUP	LICATE: 2216	001	MOD	2216882	<u>-</u>							
			4000600004	IVI3 Spiles	NISD Spiller	MO			MC	MOD	0/ D		Merr	
Paramoto	r	Linite	40226039001 Rocult	Spike Сорс	Spike	NIS Pocult	Rosul	+ 0		WSD % Poo	% Rec	חסס		Qual
Faramete	1				CONC.		Resul	<u> </u>		/0 Rec				Quai
Arsenic		mg/kg	6.5	104	104	4 106	1	06	96	96	75-125	1	20	
Barium		mg/kg	134	104	104	4 246	2	62	107	123	75-125	6	20	
Cadmium		mg/kg	1.2J	104	104	4 102	1	02	96	97	75-125	0	20	
Chromium		mg/kg	24.8	104	104	123	1	26	94	97	75-125	2	20	
Copper		mg/kg	15.8	104	104	4 111	1	14	91	94	75-125	2	20	
Lead		mg/kg	18.7	104	104	122	1	23	99	100	75-125	1	20	
Manganese		mg/kg	744	104	104	4 842	8	28	93	80	75-125	2	20	
INICKEI		mg/kg	16.9	104	104	+ 114	1	14	93	94	/5-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: ECHO LAKE Pace Project No.: 40226039

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2216	881		2216882							
			MS	MSD								
		40226039001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Selenium	mg/kg	3.7	104	104	105	104	97	96	75-125	1	20	
Zinc	mg/kg	74.7	104	104	170	180	92	102	75-125	6	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: ECH	O LAKE											
Pace Project No.: 4022	6039											
QC Batch: 384	033		Analy	sis Metho	od: E	PA 8082						
QC Batch Method: EPA	3541		Analy	, vsis Descr	iption: 8	082 GCS I	РСВ					
			Labo	ratory:	F	Pace Analy	tical Servic	es - Greer	n Bav			
Associated Lab Samples:	402260390	001, 4022603900)2, 4022603	39004, 402	26039005							
METHOD BLANK: 2215	697			Matrix: S	olid							
Associated Lab Samples:	402260390	01, 4022603900	02, 4022603	39004, 402	26039005							
			Blar	nk	Reporting							
Parameter		Units	Res	ult	Limit	Anal	yzed	Qualifie	rs			
PCB-1016 (Aroclor 1016)		ug/kg		<15.2	50.0	0 05/03/2	1 23:22					
PCB-1221 (Aroclor 1221)		ug/kg		<15.2	50.0	0 05/03/2	1 23:22					
PCB-1232 (Aroclor 1232)		ug/kg		<15.2	50.0	05/03/2	1 23:22					
PCB-1242 (Aroclor 1242)		ug/kg		<15.2	50.0	0 05/03/2	1 23:22					
PCB-1248 (Aroclor 1248)		ug/kg		<15.2	50.0	0 05/03/2	1 23:22					
PCB-1254 (Aroclor 1254)		ug/kg		<15.2	50.0) 05/03/2	1 23:22					
PCB-1260 (Aroclor 1260)		ug/kg		<15.2	50.0) 05/03/2	1 23:22					
Decachlorobiphenyl (S)		%		84	47-114	1 05/03/2	1 23:22					
letrachloro-m-xylene (S)		%		85	67-102	2 05/03/2	1 23:22					
	SAMPLE	2215698										
		2210000	Spike	LC	cs	LCS	% R	lec				
Parameter		Units	Conc.	Re	sult	% Rec	Limi	its	Qualifiers			
PCB-1016 (Aroclor 1016)		ug/kg			<15.2					_		
PCB-1221 (Aroclor 1221)		ug/kg			<15.2							
PCB-1232 (Aroclor 1232)		ug/kg			<15.2							
PCB-1242 (Aroclor 1242)		ug/kg			<15.2							
PCB-1248 (Aroclor 1248)		ug/kg			<15.2							
PCB-1254 (Aroclor 1254)		ug/kg			<15.2							
PCB-1260 (Aroclor 1260)		ug/kg	50	00	441	8	8	69-115				
Decachlorobiphenyl (S)		%				9	1 ·	47-114				
Tetrachloro-m-xylene (S)		%				8	7 (67-102				
			200		2215700							
INIAI RIA OFIRE & IVIAI RIA	STINE DUPI	LIGATE. 2215	Me	Med	2215/00							
		40225865001	Snike	Snike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
PCB-1016 (Aroclor 1016)	ua/ka	<106			<106	<106					20	
PCB-1221 (Aroclor 1221)	ua/ka	<106			<106	<106					20	
PCB-1232 (Aroclor 1232)	uq/ka	<106			<106	<106					20	
PCB-1242 (Aroclor 1242)	ug/ka	<106			<106	<106					20	
PCB-1248 (Aroclor 1248)	ug/kg	<106			<106	<106					20	
PCB-1254 (Aroclor 1254)	ug/kg	<106			<106	<106					20	
PCB-1260 (Aroclor 1260)	ug/kg	<106	3480	3490	2230	2300	64	60	6 45-120	3	3 20	
Decachlorobiphenyl (S)	%						60	62	2 47-114			
Tetrachloro-m-xylene (S)	%						79	82	2 67-102			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	ECHO LAKE								
Pace Project No .:	40226039								
QC Batch:	QC Batch: 384808			od: EF	EPA 8270E by SIM				
QC Batch Method: EPA 3546			Analysis Desc	ription: 82	8270E/3546 MSSV PAH by SIM				
			Laboratory:	Laboratory: Pace Analytical Services - Green Bay					
Associated Lab Sam	ıples: 4022	6039001, 40226039002,	40226039004, 40	226039005	,	·····			
	2210001		Motrix:	Solid					
METHOD BLANK.	2219991			50iiu					
Associated Lab Samples: 40226039001, 40226039002, 40226039004, 40226039005									
_			Blank	Reporting		0 110			
Param	ieter		Result	Limit	Analyzed	Qualifiers			
1-Methylnaphthalene	e	ug/kg	<2.4	16.7	05/11/21 11:38				
Acenaphthene		ug/kg	<2.2	16.7	05/11/21 11:38				
Acenaphthylene		ug/kg	<2.1	16.7	05/11/21 11:38				
Anthracene		ug/kg	<2.1	16.7	05/11/21 11:38				
Benzo(a)anthracene	;	ug/kg	<2.2	16.7	05/11/21 11:38				
Benzo(a)pyrene		ug/kg	<1.9	16.7	05/11/21 11:38				
Benzo(b)fluoranthen	ie	ug/kg	<2.3	16.7	05/11/21 11:38				
Benzo(e)pyrene		ug/kg	<1.9	16.7	05/11/21 11:38				
Benzo(g,h,i)perylene	3	ug/kg	<2.9	16.7	05/11/21 11:38				
Benzo(k)fluoranthen	e	ug/kg	<2.1	16.7	05/11/21 11:38				
Chrysene		ug/kg	<3.1	16.7	05/11/21 11:38				
Dibenz(a,h)anthrace	ne	ug/kg	<2.3	16.7	05/11/21 11:38				
Fluoranthene		ug/kg	<2.0	16.7	05/11/21 11:38				
Fluorene		ug/kg	<2.0	16.7	05/11/21 11:38				
Indeno(1,2,3-cd)pyre	ene	ug/kg	<3.5	16.7	05/11/21 11:38				
Naphthalene		ug/kg	<1.6	16.7	05/11/21 11:38				
Phenanthrene		ug/kg	<1.9	16.7	05/11/21 11:38				
Pyrene		ug/kg	<2.5	16.7	05/11/21 11:38				
2-Fluorobiphenyl (S))	%	79	36-86	05/11/21 11:38				
Terphenyl-d14 (S)		%	89	41-97	05/11/21 11:38				

LABORATORY CONTROL SAMPLE:	2219992					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	333	246	74	53-100	
Acenaphthene	ug/kg	333	287	86	62-120	
Acenaphthylene	ug/kg	333	291	87	61-120	
Anthracene	ug/kg	333	323	97	62-111	
Benzo(a)anthracene	ug/kg	333	301	90	61-120	
Benzo(a)pyrene	ug/kg	333	333	100	65-120	
Benzo(b)fluoranthene	ug/kg	333	325	98	64-108	
Benzo(e)pyrene	ug/kg	333	330	99	56-116	
Benzo(g,h,i)perylene	ug/kg	333	333	100	71-120	
Benzo(k)fluoranthene	ug/kg	333	321	96	76-120	
Chrysene	ug/kg	333	318	96	74-120	
Dibenz(a,h)anthracene	ug/kg	333	342	103	71-120	
Fluoranthene	ug/kg	333	312	94	67-112	
Fluorene	ug/kg	333	298	89	65-120	
Indeno(1,2,3-cd)pyrene	ug/kg	333	341	102	74-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: ECHO LAKE Pace Project No.: 40226039

LABORATORY CONTROL SAMPLE: 2219992

Spike LUS LUS % Rec	Qualifiara
	Quaimers
Naphthalene ug/kg 333 264 79 53-120	
Phenanthrene ug/kg 333 309 93 67-120	
Pyrene ug/kg 333 313 94 60-103	
2-Fluorobiphenyl (S) % 82 36-86	
Terphenyl-d14 (S) % 89 41-97	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2219993				2219994								
			MS	MSD								
	4	10226163006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	<2.9	399	399	209	257	53	64	41-100	20	29	
Acenaphthene	ug/kg	<2.6	399	399	258	284	65	71	43-120	10	27	
Acenaphthylene	ug/kg	<2.5	399	399	263	293	66	73	51-120	11	26	
Anthracene	ug/kg	<2.5	399	399	312	316	78	79	46-111	1	29	
Benzo(a)anthracene	ug/kg	<2.6	399	399	287	285	71	71	48-120	1	23	
Benzo(a)pyrene	ug/kg	<2.3	399	399	320	315	80	79	46-108	2	30	
Benzo(b)fluoranthene	ug/kg	<2.8	399	399	296	292	74	73	45-108	1	30	
Benzo(e)pyrene	ug/kg	<2.3	399	399	316	309	79	77	21-122	2	24	
Benzo(g,h,i)perylene	ug/kg	<3.5	399	399	309	302	77	75	39-120	2	37	
Benzo(k)fluoranthene	ug/kg	<2.6	399	399	338	336	85	84	47-120	1	31	
Chrysene	ug/kg	<3.8	399	399	312	311	78	78	54-120	0	21	
Dibenz(a,h)anthracene	ug/kg	<2.8	399	399	319	313	80	79	46-120	2	34	
Fluoranthene	ug/kg	<2.4	399	399	302	302	76	76	53-112	0	27	
Fluorene	ug/kg	<2.4	399	399	279	293	70	73	48-120	5	29	
Indeno(1,2,3-cd)pyrene	ug/kg	<4.2	399	399	317	311	79	78	40-120	2	34	
Naphthalene	ug/kg	<1.9	399	399	213	281	53	70	47-120	28	25	R1
Phenanthrene	ug/kg	<2.3	399	399	296	302	74	76	49-120	2	28	
Pyrene	ug/kg	<2.9	399	399	308	307	77	77	43-103	0	31	
2-Fluorobiphenyl (S)	%						58	66	36-86			
Terphenyl-d14 (S)	%						73	71	41-97			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	ECHO LAKE							
Pace Project No.:	40226039							
QC Batch:	383952		Analysis Meth	od:	ASTM D2974-87	7		
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Perc	ent Moisture		
			Laboratory:		Pace Analytical	Services - Gre	een Bay	
Associated Lab Sar	mples: 402260390	01, 4022603900	2, 40226039003, 40	226039004,	40226039005, 4	0226039006		
SAMPLE DUPLICA	TE: 2214854							
			40226034002	Dup		Max		
Para	meter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	49.5	48	.1	3	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	ECHO LAKE											
Pace Project No.:	40226039											
QC Batch:	384498		Anal	ysis Metho	d:	EPA 350.1						
QC Batch Method:	EPA 350.1		Anal	ysis Descri	iption:	350.1 Amm	onia					
			Labo	oratory:		Pace Analyt	ical Servic	es - Green	Bay			
Associated Lab Sar	mples: 40226039	0001, 4022603900	02, 4022603	39004, 402	26039005							
METHOD BLANK:	2217916			Matrix: S	olid							
Associated Lab Sar	nples: 40226039	001, 4022603900	02, 4022603	39004, 402	26039005							
			Blai	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Anal	/zed	Qualifier	S			
Nitrogen, Ammonia		mg/kg		<6.4	21	.5 05/06/2	1 18:49					
LABORATORY CO	NTROL SAMPLE:	2217917										
			Spike	LC	CS	LCS	% R	ec				
Parar	neter	Units	Conc.	Re	sult	% Rec	Lim	its (Qualifiers			
Nitrogen, Ammonia		mg/kg	30	00	293	98	3	80-120				
MATRIX SPIKE & N	ATRIX SPIKE DU	PLICATE: 2217	918		221791	9						
			MS	MSD								
		10557184001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Unit	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, Ammonia	mg/k	g 62.9	299	302	354	303	98	80	80-120	15	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	ECHO	LAKE											
Pace Project No.:	402260	39											
QC Batch:	38422	22		Anal	ysis Method	d:	EPA 351.2						
QC Batch Method:	EPA 3	351.2		Anal	ysis Descrij	ption:	351.2 TKN						
				Labo	oratory:		Pace Analy	tical Service	es - Green	Bay			
Associated Lab Sa	mples:	4022603900	1, 4022603900	2, 4022603	39004, 4022	26039005							
METHOD BLANK:	221639	9			Matrix: So	olid							
Associated Lab Sa	mples:	4022603900	1, 4022603900	2, 4022603	39004, 4022	26039005							
				Bla	nk l	Reporting							
Para	meter		Units	Res	ult	Limit	Anal	yzed	Qualifiers	5			
Nitrogen, Kjeldahl,	Total		mg/kg		<21.2	10	00 05/05/2	1 13:27					
LABORATORY CO	NTROL S	SAMPLE: 2	216400										
				Spike	LC	S	LCS	% R	ec				
Para	meter		Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers	_		
Nitrogen, Kjeldahl,	Total		mg/kg	50	00	490	9	8 8	30-120				
MATRIX SPIKE & M	MATRIX S	SPIKE DUPLI	CATE: 2216	401		2216402	2						
			4055000004	MS	MSD					0/ D			
Deremete		Linito	10556682001	Spike	Spike	MS	MSD	MS % Dee	MSD	% Rec	חחח	Max	Qual
Paramete	1				Conc.	Result	Result	% Rec	% Rec	Limits			Quai
Nitrogen, Kjeldahl,	Total	mg/kg	10900	2350	2350	13900	13400	586	566	80-120	4	20	P6
MATRIX SPIKE & I	MATRIX		CATE: 2216	403		2216404	4						
				MS	MSD								
			40226039001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, Kjeldahl,	Total	mg/kg	4380	919	915	4970	4820	536	523	80-120	3	20	P6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	ECHO LAKE											
Pace Project No.:	40226039											
QC Batch:	384718		Anal	ysis Metho	d:	EPA 353.2						
QC Batch Method:	EPA 353.2		Anal	ysis Descri	ption:	353.2 Nitra	te + Nitrite					
			Labo	oratory:		Pace Analy	tical Servic	es - Green	Bay			
Associated Lab Sar	mples: 40226039	9001, 4022603900	02, 4022603	39004, 402	26039005	5						
METHOD BLANK:	2219664			Matrix: So	olid							
Associated Lab Sar	mples: 40226039	9001, 4022603900	2, 4022603	39004, 402	26039005	5						
			Blai	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Ana	lyzed	Qualifier	S			
Nitrogen, NO2 plus	NO3	mg/kg		<0.97	:	3.2 05/11/2	21 14:21					
LABORATORY CO	NTROL SAMPLE:	2219665										
			Spike	LC	S	LCS	% F	Rec				
Parar	neter	Units	Conc.	Res	sult	% Rec	Lim	iits (Qualifiers			
Nitrogen, NO2 plus	NO3	mg/kg	2	25	24.7	ę	99	80-120				
MATRIX SPIKE & M	ATRIX SPIKE DU	PLICATE: 2219	666		221966	67						
			MS	MSD								
_		40226535001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Unit	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, NO2 plus	NO3 mg/k	g <47.1	1210	1210	1230) 1210	98	96	80-120	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Phosphorus	mg/k	g 873	908	933	1740	1710	95	90	80-120	1	20	
Paramete	er Units	40226039006 s Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
MATRIX SPIKE & M	MATRIX SPIKE DUP	PLICATE: 2215	688 MS	MSD	221568	9						
Phosphorus	mg/k	g 333	493	484	692	837	73	104	80-120	19	20	M0
Paramete	r Units	40225810001 s Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
MATRIX SPIKE & M	MATRIX SPIKE DUP	PLICATE: 2215	686 MS	MSD	221568	7						
Phosphorus		mg/kg	50	00	518	10	4 8	30-120				
LABORATORY CO	NTROL SAMPLE:	2215685 Units	Spike Conc.	LC Res	S sult	LCS % Rec	% R Limi	ec ts (Qualifiers			
Phosphorus		mg/kg		3.1J	20	.0 05/03/2	1 15:46					
Para	meter	Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Associated Lab Sa	mples: 40226039	9001, 4022603900	2, 4022603 Blai	39003, 402: nk	26039004, Reportina	402260390	05, 402260)39006				
METHOD BLANK:	2215684			Matrix: So	olid							
Associated Lab Sa	mples: 40226039	9001, 4022603900	2, 4022603	39003, 402	26039004,	402260390	05, 402260	39006				
QC Batch Method.	EPA 305.4		Labo	pratory:	puon.	Pace Analy	tical Service	s es - Green	Bay			
QC Batch:	384030		Anal	ysis Metho	d: -tion:	EPA 365.4	Dhaanham	_				
Pace Project No.:	40226039											
Project:	ECHO LAKE											

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	ECHO LAK	E												
Pace Project No.:	40226039													
QC Batch:	385114			Analy	sis Metho	od:	EF	PA 9060						
QC Batch Method:	EPA 9060			Analy	/sis Descr	iption:	90	60 TOC A	verage					
				Labo	ratory:		Pa	ice Analyt	ical Servic	es - Green	Bay			
Associated Lab Sar	mples: 402	26039001	, 4022603900	2, 4022603	9004, 402	226039005	5							
METHOD BLANK:	2221902				Matrix: S	olid								
Associated Lab Sar	mples: 402	26039001	, 4022603900	2, 4022603	9004, 402	226039005	5							
				Blar	nk	Reporting	J							
Parar	neter		Units	Res	ult	Limit		Anal	/zed	Qualifier	s			
Mean Total Organic	Carbon		mg/kg		<194	6	647	05/14/2	1 02:30					
LABORATORY CO	NTROL SAM	PLE: 22	21903											
				Spike	L	CS		LCS	% R	lec				
Parar	neter		Units	Conc.	Re	sult	9	% Rec	Lim	its	Qualifiers			
Mean Total Organic	Carbon		mg/kg	12000	00	119000		9	9	80-120				
MATRIX SPIKE & N	ATRIX SPIK		ATE: 2221	904		222190	05							
				MS	MSD									
		4	0226039001	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	 	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mean Total Organic	Carbon	mg/kg	46900	76600	75000	11100	0	111000	84	85	50-150	0	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: ECHO LAKE Pace Project No.: 40226039

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	ECHO LAKE
Pace Project No.:	40226039

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40226039001	S1	EPA 3541	384033	EPA 8082	384034
40226039002	S2	EPA 3541	384033	EPA 8082	384034
40226039004	S4	EPA 3541	384033	EPA 8082	384034
40226039005	S5	EPA 3541	384033	EPA 8082	384034
40226039001	S1	EPA 3050	384293	EPA 6020	384367
40226039002	S2	EPA 3050	384293	EPA 6020	384367
40226039004	S4	EPA 3050	384293	EPA 6020	384367
40226039005	S5	EPA 3050	384293	EPA 6020	384367
40226039001	S1	EPA 7471	384605	EPA 7471	384731
40226039002	S2	EPA 7471	384605	EPA 7471	384731
40226039004	S4	EPA 7471	384605	EPA 7471	384731
40226039005	S5	EPA 7471	384605	EPA 7471	384731
40226039001	S1	EPA 3546	384808	EPA 8270E by SIM	384860
40226039002	S2	EPA 3546	384808	EPA 8270E by SIM	384860
40226039004	S4	EPA 3546	384808	EPA 8270E by SIM	384860
40226039005	S5	EPA 3546	384808	EPA 8270E by SIM	384860
40226039001	S1	ASTM D2974-87	383952		
40226039002	S2	ASTM D2974-87	383952		
40226039003	S3	ASTM D2974-87	383952		
40226039004	S4	ASTM D2974-87	383952		
40226039005	S5	ASTM D2974-87	383952		
40226039006	S6	ASTM D2974-87	383952		
40226039001	S1	EPA 350.1	384498	EPA 350.1	384532
40226039002	S2	EPA 350.1	384498	EPA 350.1	384532
40226039004	S4	EPA 350.1	384498	EPA 350.1	384532
40226039005	S5	EPA 350.1	384498	EPA 350.1	384532
40226039001	S1	EPA 351.2	384222	EPA 351.2	384279
40226039002	S2	EPA 351.2	384222	EPA 351.2	384279
40226039004	S4	EPA 351.2	384222	EPA 351.2	384279
40226039005	S5	EPA 351.2	384222	EPA 351.2	384279
40226039001	S1	EPA 353.2	384718	EPA 353.2	384865
40226039002	S2	EPA 353.2	384718	EPA 353.2	384865
40226039004	S4	EPA 353.2	384718	EPA 353.2	384865
40226039005	S5	EPA 353.2	384718	EPA 353.2	384865
40226039001	S1	EPA 365.4	384030	EPA 365.4	384071
40226039002	S2	EPA 365.4	384030	EPA 365.4	384071
40226039003	S3	EPA 365.4	384030	EPA 365.4	384071
40226039004	S4	EPA 365.4	384030	EPA 365.4	384071
40226039005	S5	EPA 365.4	384030	EPA 365.4	384071
40226039006	S6	EPA 365.4	384030	EPA 365.4	384071
40226039001	S1	EPA 9060	385114		
40226039001	S1	EPA 9060	385115		
40226039002	S2	EPA 9060	385114		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:ECHO LAKEPace Project No.:40226039

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40226039002		EPA 9060	385115		
40226039004	S4	EPA 9060	385114		
40226039004	S4	EPA 9060	385115		
40226039005	S5	EPA 9060	385114		
40226039005	S5	EPA 9060	385115		

Company Name: Branch/Location: Project Contact: Phone: Project Number: Project Name: Project State: Sampled By (Print): Sampled By (Sign): PO #: Data Package Opti (billable) EPA Level II EPA Level II PACE LAB # OO OO OO OO OO OO OO OO OO O	Aircs Eng ((airc Rob Waipe 7(5 - 495 - 212 E(Lo Lope W^{T} R = A55 M = 0 nyour sample (billable) V = 0 NOT needed on your sample CLIENT FIELD ID S/ S2 S3 ($OA(Y PfI)$	L Regulatory Program: Mat A = Air B = Biota C = Charcoal D = Oil S = Soil SI = Sludge COLL DATE 4//24	FILTE (YES PRESEF (CO Trix Codes W = Water DW = Drinki GW = Grinki GW = Grinki GW = Grinki GW = Surfat WP = Wipe LECTION TIME (3:00	one B= odium Bisu ERED? S/NO) RVATION DDE)*	HCL C=I Ifate Solution Y/N Pick Letter Paces Y/N Pick Letter		D=HN03 =Sodiur	A/*	JST Vater F= ate J=		JY G=NaOH		WI: 920-469- Quote Mail To C Mail To Cc Mail To A Invoice To Invoice To Invoice To CLUE	e #: ontact: ompany: ddress: Contact: Contact: Company: Address:	100 Rob L A.1/1x1 3-1330 Particle Rob L A.1/1x5 I Rob L A.1/1x5 I (715- LAB CO	260 De pro-	26
Branch/Location: Project Contact: Phone: Project Number: Project Name: Project State: Sampled By (Print): Sampled By (Sign): PO #: Data Package Opti (billable) EPA Level II EPA Level II EPA Level II PACE LAB # OOO OOO OOO OOO OOO OOO OOO O	En y ((air.e 205 Warper 7(5 - 495 - 212 (5(40) Loke WT R = A55 MWMM III On your sample V = NOT needed on your sample CLIENT FIELD ID S/ S2 S3 ($OA(4)$ Pf()	L Regulatory Program: Mat A = Air B = Biota C = Charcoal O = Oil S = Soil SI = Sludge COLL DATE 4 / 2 4	H=Sc H=Sc FiLTE (YES PRESEF (CO Trix Codes W = Water DW = Drink GW = Grou SW = Surfa W = Water WP = Wipe LECTION TIME [] 3:00	one B= odium Bisu ERED? S/NO) RVATION DDE)* S s ding Water ind Water ind Water ind Water ind Water ind Water	Pace	Ana www.pc 10 H2SO4 on S) b} T/W	Preserva D=HINO3 =Sodium	All com E=DIW Thiosulfa	JS Vater F=		JY G=NaOH		Quoto Mail To C Mail To Co Mail To A Invoice To Invoice To Invoice To	e #: ontact: ompany: ddress: Contact: Company: Address: o Phone:	Rob C Rob C A. 1/1x1 3-1330 Porture Rub La A. 1/1x5 11 (715- LAB CO	200 De 100 De 10	26
Project Contact: Phone: Project Number: Project Name: Project State: Sampled By (Print): Sampled By (Sign): PO #: Data Package Opti (billable) EPA Level II PACE LAB # OO OO OO OO OO OO OO OO OO O	$\frac{2}{5} \frac{1}{5} \frac{1}$	Image: state	FILTE (YES PRESEF (CO Trix Codes W = Water DW = Drinki GW = Gricki GW = Gricki	one B= odium Bisu ERED? SNO) RVATION DDE)*	HCL C=I Ifate Solution Y/N Pick Letter Page Second	H2504 on S) of T/W	D=HN03 =Sodiur // //////////////////////////////////	En Cll tion Code E=DI W Thiosulfa	JS Vater F= ate J=		JY G=NaOH		Quoto Mail To Co Mail To Co Mail To Ao Invoice To Invoice To Invoice To CLUE	e #: ontact: ompany: ddress: Contact: Contact: Company: Address:	Rob L A. 11x1 3-1330 Parauco Rob La A. 11 (715- LAB CO) = pr - 1 EC, L - 1 EC, L - 495 - 2(- 495 - 2(27/5 ·] 547
Phone: Project Number: Project Name: Project State: Sampled By (Print): Sampled By (Sign): PO #: Data Package Opti (billable) EPA Level II EPA Level II EPA Level II PACE AB # COO COO COO COO COO COO COO CO	$\frac{7(\varsigma - 495 - 212}{(\varsigma (\omega) Loke}$ $\frac{1}{W^{2}}$ $\frac{1}{W$	L Regulatory Program: Mat A = Air B = Biota C = Charcoal O = Oil S = Soil S = Soil S = Soil COLL DATE 4/74	FILTE (YES PRESEF (CO Trix Codes W = Water DW = Drinki GW = Grour SW = Surfa WP = Wipe LECTION TIME []:00	s one B= odium Bisu sRED? S/NO) RVATION DDE)* s ding Water ind Wat	HCL C=I Ifate Solution	H2504 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	D=HNO3 D=HNO3 D=Sodiur		JS Vater F=		JY G=NaOH		Mail To C Mail To Co Mail To A Invoice To Invoice To Invoice To Invoice To	ontact: ompany: ddress: Contact: Company: Address: o Phone:	Rob L <u>A.11x1</u> 3-1330 Porture <u>Rub La</u> <u>A.11x1</u> <u>11</u> 11 11 11 11 11 11 11 11 11)~ 10 - 10 -1 EC, U Jeyn 5 - 495 - 21	2 (
Project Number: Project Name: Project State: Sampled By (Print): Sampled By (Sign): PO #: Data Package Opti (billable) EPA Level II EPA Level II PACE LAB # OOD OD OD OD OD OD OD OD OD O	$\begin{array}{c c} \hline & & & & \\ \hline & & \\ \hline \\ \hline$	Regulatory Program: Mat A = Air B = Biota C = Charcoal D = Oil S = Soil SI = Sludge COLL DATE 4/74	A=Nc H=Sc FILTE (YES PRESEF (CO trix Codes W = Water DW = Drink GW = Grou SW = Surfar WP = Wipe LECTION TIME (3:00	one B= odium Bisu ERED? S/NO) RVATION DDE)* S s ding Water ind Water ice Water te Water ice Water	HCL C=I Ifate Solution	H2504 on S) bf T/V	Preserva D=HNO3 I=Sodiur I=Sodiur N/V///////////////////////////////////		23 Vater F= ste J=		G=NaOH 1×f2 40504		Mail To Co Mail To A Invoice To Invoice To Invoice To Invoice To	ompany: ddress: Contact: Company: Address: o Phone:	A.11x1 3+1330 Porture Rub In Ayres 11 (715- LABCO	- 495-2(2715 13 547 26
Project Name: Project State: Sampled By (Print): Sampled By (Sign): PO #: Data Package Opti (billable) EPA Level II EPA Level II PACE ¹ LAB # OO OO OO OO OO OO OO OO OO O	$\begin{array}{c} (\Box \cup \Box \circ he \\ \hline \\ $	Regulatory Program: Mat A = Air B = Biota C = Charcoal C = Charcoal C = Charcoal S = Soil SI = Sludge COLL DATE 4/74	H=SC FILTE (YES PRESEF (CO Trix Codes W = Wate W = Wate W = Surfa W = Surfa V = Surfa	odium Bisu ERED? S/NO) RVATION DDE)* S s s s s ding Water ind Wate	Y / N Pick Letter Pøtsenbes Saskfeur	ML fals	I KN, WIN, CLUMAN NY		ste J=	Other HIMd (2)	105ph Total		Mail To A	ddress: Contact: Company: Address: Phone:	3-133 0 Parili-C Rob In Agres 11 (715- LAB CO	- 495-21	27/5 1 2 6
Project State: Sampled By (Print): Sampled By (Sign): PO #: Data Package Opti (billable) EPA Level II EPA Level II PACE LAB # OOC	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	Regulatory Program: Mat A = Air B = Biota C = Charcoal O = Oil S = Soil SI = Sludge COLL DATE 4//24	FILTE (YES PRESEF (CO trix Codes W = Water DW = Drink GW = Grou SW = Surfar WW = Wast WW = Wast UW = Wast UW = Wast UTIME	ERED? S/NO) RVATION DDE)* S ding Water ind Water ice Water te Water te Water	Analyses Requested	Metals	TKN, NAN, aunina	702	Sirve	C3/DMH -	rosph Total		Invoice To Invoice To Invoice To Invoice To	Contact: Company: Address:	Partura Russ In Nyres 11 (715- LABCO	-1 EC, 4 JEYM 5 - 495-2(26
Sampled By (Print): Sampled By (Sign): PO #: Data Package Opti (billable) EPA Level II EPA Level II PACE LAB # OOD OD2 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD3 OD4 OD4 OD5 OD4 OD5 OD4 OD5 OD5 OD5 OD5 OD5 OD5 OD5 OD5	R A A S tions MS/MSD A III On your sample A IV NOT needed on your sample C CLIENT FIELD ID S S S7 $(OA(Y, Pf()))$	Regulatory Program: Mat A = Air B = Biota C = Charcoal O = Oil S = Soil SI = Sludge COLL DATE 4/724	PRESER (CO W = Water DW = Drinki GW = Groun SW = Surfa WW = Wast WP = Wipe LECTION TIME [3:00	RVATION DDE)* s sing Water ind Water ice Water ice Water ice Water ice Water	Analyses Requested	Metals	TKM, MAN, Guanna	705	Sirve	(3/ PMH	rosph Tstal		Invoice To Invoice To Invoice To Invoice To	Contact: Company: Address: Phone:	Rub Lu Ayres 11 (715-	J241 5 - 495-2(OMMENTS	5(
Sampled By (Sign): PO #: Data Package Opti (billable) EPA Level II EPA Level II PACE LAB # OO OO OO OO OO OO OO OO OO O	MS/MSD tions MS/MSD III On your sample $(billable)$ C V NOT needed on your sample CLIENT FIELD ID $S/$ $S7$	Regulatory Program: Mat A = Air B = Biota C = Charcoal O = Oil S = Soil SI = Sludge COLL DATE 4/74	trix Codes W = Water DW = Drinki GW = Grour SW = Surfast WP = Wipe LECTION TIME [3:00	s ing Water nd Water ce Water te Water MATRIX MATRIX	Analyses Requested	Metals	TKN, NAN, Gunna	706	Sirve	(B) PMH	rosph Total		Invoice To C	Company: Address: Phone:	λ.γ.e.s (((7(5- LAB CO	- 495- 21	5(
PO #: Data Package Opti (billable) EPA Level II PACE LAB # OO OO OO OO OO OO OO OO OO O	tions MS/MSD III On your sample V NOT needed on your sample S/ S/ S2 S3	Regulatory Program: Mat A = Air B = Biota C = Charcoal D = Oil S = Soil SI = Sludge COLL DATE 4/24	trix Codes W = Water DW = Drinki GW = Groun SW = Surfai WW = Wast WP = Wipe LECTON TIME [3:00	s ting Water and Water the Water MATRIX	Analyses Requested	Metals	TKW, NAN, CLUMM	702	Silve	(B) PMH	rosph Total		Invoice To	Address:	((7(S- LAB CO	- 495- 2(5(
Data Package Opti (billable) EPA Level II PACE LAB # 0 002 0 003 0 005 0 00000000	tionsMS/MSDIIIOn your sample (billable)IVNOT needed on your sampleSSCLIENT FIELD IDS/S2S3 $(OA(Y PFI))$	$\begin{array}{c} \mbox{Mat}\\ A = Air\\ B = Biota\\ C = Charcoal\\ O = Oil\\ S = Soil\\ S = Soil\\ S = Sludge\\ \hline \mbox{Coll}\\ \hline $	trix Codes W = Water DW = Drinki GW = Groun SW = Surfar WW = Wast WP = Wipe LECTION TIME	S ting Water Ind Water Ice Water te Water MATRIX S	Analyses Regu	Metals	TKN, NHN, CH	702	Situr	(B / PMI	rosph TS			o Phone:	7(5-	- 495-21	2(
PACE LAB #	III (billable) IV NOT needed on your sample s_{s}^{C} CLIENT FIELD ID 5/ 52 53 ($D_{A}(\gamma Pf())$	B = Biota C = Charcoal O = Oil S = Soil SI = Sludge COLL DATE 4/29	DW = Drinki GW = Grour SW = Surfar WW = Wast WP = Wipe LECTION TIME [3:00]	ting Water ind Water ice Water te Water MATRIX	Analyses I	Netal	TKN, WHM	705	Silve	(B/P	hoson			o Phone:	715-	- 495-21	26
PACE LAB #	Image: Notified and the second of the se	S = Soil SI = Sludge COLL DATE	WW = Wast WP = Wipe LECTION TIME	MATRIX	Anal	Ne	TKW,	10	Si e	\sim	S				LAB CO	OMMENITE	
	5/ 52 53 (Un (4 PH)	<u>рате</u> 4/29	тме (3:00	5		<u> </u>	N			~ ~	2			ENT ENTS	(Lab I	Use Oniv)	Profile
	52 53 (Un (4 PH)	-1/24	1	17	Stand State	8									(200 0		<u> </u>
	53 (On (4 PH)			1	8060	<u>``</u>											
	SS (UNIY FFI)		+	+							7		<u> </u>				
	1			+	63300F/ 802082						<u> </u>						
	54				aran da ana				i						1		
	55			┼╌┼─													
	>6 [OA (/ PM)		\		1923										<u> </u>		
	·····														,		
			-		Contraction of the second s								-				
· · · · · · · · · · · · · · · · · · ·		_		~ **	1.2.2.2.2.2. Martin (1.2.2.2.												
		_														<u>.</u>	
																ě.	
							 										
Rush Turnarour	Ind Time Requested - Prelim	ms Raiir	inquished By:	<u> </u>	0	<u> .</u>		te/Time:	<u> </u>		Received			Dale/Time:	<u> </u>	PACE Pr	oject No.
(Rush TAT sub Date	bject to approval/surcharge	e) (inquished By:		Ľ.	4	<u>29[7</u> ¤	te/Time:	197	30	Received By	24/		3011 Date/Time:	07.70	MDZa	XO
Transmit Prelim Rush	h Results by (complete what you w	vant):		Ť			-				Devel 15			Data Tirra		-Receipt Temp =	5
Email #1: Email #2:	· · · · · · · · · · · · · · · · · · ·	Reli	inquished By:				Da	te/Time:			Received By			Date/ Hime:		Sample R	lecetpt pH
Telephone:	one: Relinquished By:						Da	te/Time:			Received By		. <u></u>	Date/Time:		OK/A	djusted
Fax: Samples o	on HOLD are subject to	Reli	inquished By:	:			Da	te/Time:			Received By			Date/Time:	<u></u>	Present / N	Not Preser

C019a(27Jun2006)

Clie	nt	Nar	ne:		Ð	Ś	es					S	Sam	ple	Pr Pre	ese ojec	e rva ct #	tio U	n R	ece	ipt	For	rm O	30	7		•				1241 E	Green I	Street, Suite 9 Bay, WI 54302
	All o	contai	ners r	needin	g pres	ervati	on ha	ve be	en ch	ecked Lab	and r Lot# c	oted I	- below: baper:	□Yes	□No		La	b Std i	#ID of	prese	rvatio	n (if pl	l adju	sted):					Initial comp	when leted:		Date/ Time:	
				Gl	ass						Plast	ic				Vi	als			[Ja	ars		Ge	enera	al	s (>6mm) *	H ≤2	ı Act pH ≥9	≥12	52	Idjusted	Volume
Pace Lab #	AG1U	BG1U	AG1H	AG4S	AG4U	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	VG9A	DG9T	VG9U	NG9H	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN	VOA Vial	H2SO4 pl	NaOH+Zr	NaOH pH	HNO3 pH	pH after a	(mL)
001																					2		2		1								2.5 / 5 / 10
002					Rest				19.5	1938											2		2						196 <i>8345</i> 78669693				2.5/5/10
003	21-25-52				- are 20 Aux	1.000200001		1. New villion			a contrata de la		and the second	anta - Cal	1,07, (30%)	- Streetway			1.000.00	1		And to take		1. S. S. S	and Carring	1.0000000	154-9-150)		No. Contraction		A Day of States of the	Version of State 1.14	2.5 / 5 / 10
004	31-045 15-855					- 2843								87-33. St - 33.	1933		X 43				12		1	12.2	1		Sec.	State:				368A	2.5/5/10
005	1000	1.50	18.536	1-150		102556	-	A. 1994	Contra de	5 5 000000	Sec. 19	Section	24555	102.665	SEALES	Without a	a ser aver	ideóide	14.1.24		2	Colorba	2	RÖLEN		8536 S		and the second second	100303456		New York		2.5/5/10
005	-	2.2	1.1			2.693	83.0A		2005	19-02			28.8					243				1.34	121 928	19233	(EUENA)			285325	23.3		appendix to	1990 (1990). 1	2.5/5/10
007	1000		a de la composición d	100000		Office is	14.258		anter :	 All data 		12078	(1957) (1957)	er ste	(THE REAL		- tstaff	1940000	03.82t	interior.	1997.	100236	120303				a second	(anti-sector)		10:50		18-34C	2.5/5/10
000	2025,0	22,402		\leftarrow		S. (2005)		See	12-12-1	i Rosana I			Selection of the	1997499	07220	2.525(68)		12240		Standorf.	0355-233	87837J	1049993		1262-867	10121285	10.20	san Pjil.	2,5,6 +	1995-581	0.8496 A	OCCORE.	25/5/10
010	18 87 8 88 87 8		325		539991			24.83		1.5198	15963		්තැන්				895.¥	1333 1333					Suacoe	1.000		- Solite		56 M.				6 - KERK	2.5/5/10
011	059662	1.251.924		C. State	and a second second	1.19492-11	02,924	388.a			- CERTA	1.000	10.02	1977 - 197 <u>9</u>	10.00	1.000396777	1 2406945-75	් වා අයි. ව	the fields	Signature:	(applica)	0.000005	-10790903	Sixtax.	ALBHEAN A	1.000000	1.1760 B		10-2800-473 (M	SCATTER MICH		210.08369	2.5/5/10
012	1.6	5 1 Å 2			Sec. 1	26.78			16.8							-	in the		24 A				0.8580										2.5/5/10
013			. saurado	T PERMISSION	2 . ACCESSION	1 Starter		100 B											a de la compañía de l			1997 August da		alle station and	See to feed.	- Alle Davies	766 SUIVA	and the second second	1.010.0200.020				2.5 / 5 / 10
014		10	-8-x3	in the	1.00	See. 1				1.12		25.21	(認識)	83 8 8	100					2000													2.5/5/10
015																				D	X	A1	20	51									2.5/5/10
016																	2.240.00 (B				Starting of		100 P.C.S.					E CAR	2. B		-04		2.5/5/10
017																							\sim										2.5 / 5 / 10
018					1 202																		2.207 C 12.5	(C.))							1985 SK		2.5/5/10
019																											(/					2.5/5/10
020							17.29-28 27.39-28											esteration esteration	1945								No.						2.5/5/10
Exce	otions	s to pr	reserv	ation of	check:	VOA	. Colit	form.	TOC.	тох.	ТОН.	0&G.	WID	RO. P	henol	ics. O	ther:			Head	dspace	e in VO	DA Via	als (>6	imm) :	⊡Yes	⊡No	∕ GN/A	*if ve	s look	in head	dspace	column
AG1U	1 lite	er an	her o	alass				BE	2111	, 1 lite	, er nla	, stic u	nres				394	40 m	u de	- ar as	corbi	<u></u>		UC	÷FU	4 07	amb	eriar	unnre	25		·	1
BG1U	1 lite	er cle	ear gla	ass				BF	230	250	mL p	lastic	unpre	es			39T	40 m	1L am	ber N	la Th	io		Jo	9U	9 oz	amb	erjar	unpre	es			
AG1H	1 lite	er an	nber g	glass	HCL			BF	°3B	250	mL p	lastic	NaOl	Н		v	39U	40 n	ıL cle	ar via	al unp	res		w	GFU	4 oz	clea	r jar u	Inpres	\$			
AG4S	125	mL a	ambe	r glas	s H2	SO4		BF	P3N	250	mL p	lastic	HNO	3		VC	G9H	40 m	1L cle	ar via	al HCI	_		W	PFU	4 oz	plas	tic jar	unpre	es	6-1-		4
	120 100	mLa	ambe	r glas	s unp	ores		BF	-35	250	mLp	lastic	H2S(4ر			39M	40 m	IL cle	ar via	ai Me(JH			-51 N C	120 ziple	mL p	nastic	na T	niosul	irate		
AG2S	500	mL a	ambe	r glas	s unp s H29	SO4											390	40 11			וט ו				SN	Zipic		y					
BG3U	250	mLo	clear	glass	unpre	es																		```		1							

F-GB-C-046-Rev.03 (11Feb2020) Sample Preservation Receipt Form

Page 1 of 4 Page 32 of 49

Pace Analytical Services, LLC

			Docur	nent Name:	Document Revised: 26Mar2020
Pace Analytical [®]	Samp	le Co	nditio	n Upon Receipt (SCUR)	
1241 Bellevue Street, Green Bay, WI 54302	E	NV-F	Doci RM-G	ument No.: BAY-0014-Rev.00	Autnor: Pace Green Bay Quality Office
Sample C	Sondit	lion	Upo	n Receipt Form (S	CUR)
Olivert Newson Noticel				Project #:	
				. W	0#:40226039
Client Pace Other:	e 🗖	UPS			
Tracking #:				_ 402	26039
Custody Seal on Cooler/Box Present: Tyes	nó	Seals	intact:		
Custody Seal on Samples Present: Lyes	no :	Seals	intact:		
Thermometer Upod SP - 92	Type o	S L.		Blue Dry None	Samples on ice, cooling process has begun
Cooler Temperature	- iype u	1 100.	<u>Uver</u>	-	Person examining contents:
Temp Blank Present: \Box ves \Box		Biolo	- gical T	issue is Frozen: 🔲 ye	s no Date: 4/30/21/Initials
Temp should be above freezing to 6°C.				·	TX-
Biota Samples may be received at \leq 0°C if shipped on Dr	y Ice.			r	Labeled By Initials:
Chain of Custody Present:	Yes		□n/a	1.	
Chain of Custody Filled Out:	□Yes	2No	□n/a	2proj #, poj#,	analyis not checked about
Chain of Custody Relinquished:	□Yes	□No	□n/a	3.	
Sampler Name & Signature on COC:	Yes	□No	□n/A	4.	
Samples Arrived within Hold Time:	Yes	□No		5.	
- VOA Samples frozen upon receipt	□Yes	□No		Date/Time:	
Short Hold Time Analysis (<72hr):	□Yes		,	6.	
Rush Turn Around Time Requested:	□Yes			7.	
Sufficient Volume:				8.	
For Analysis: Pyes DNo MS/MSD:	□Yes		□n/A		
Correct Containers Used:	Yes	□No		9.	
-Pace Containers Used:	Yes	□No	□n/a		
-Pace IR Containers Used:	□Yes	□No			
Containers Intact:	Yes	□No		10.	
Filtered volume received for Dissolved tests	□Yes	□No		11.	
Sample Labels match COC:	Yes	□No	□n/a	12.	
-Includes date/time/ID/Analysis Matrix:	S		_		х.
Trip Blank Present:	Yes	□No		13.	
Trip Blank Custody Seals Present	□Yes	□No			
Pace Trip Blank Lot # (if purchased):					
Client Notification/ Resolution:			Doto /	lf checke	d, see attached form for additional comments
Comments/ Resolution:					
·····					

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logir

2_of_2_ Page 33 of 49 Page_

	Suggested Analytical Method	Sugges Paramete	ted Base r Analyses ¹
Parameter	(Suggested Detection Level) (mg/kg, dry weight unless noted)	Great Lakes or Urban/ Industrial	Inland Waters (Rural/ Forested)
Inorganics - Metals			
Arsenic	SW-846 3050B/6010B EPA 6010 or 7060 (5)	X	X
Barium	SW-846 3050B/6010B (0.2)		
Cadmium	SW-846 3050B/6010B EPA 7131 (0.6)	X	X
Chromium (total)	SW-846 3050B/6010B EPA 6010 or 7191 (0.6)	X	X
Copper	SW-846 3050B/6010B EPA 6010 or 7211 (0.5)	X	X
Cyanide	SW-846 9010B/9014 (0.4)		
Lead	SW-846 3050B/6010B EPA 6010 or 7421 (3)	X	X
Manganese	SW-846 3050B/6010B (0.1)		
Mercury	SW-846 7471A EPA 7471 (0.015)	X	X
Nickel	SW-846 3050B/6010B EPA 6010 (2)	X	X
Selenium	SW-846 3050B/6010B (8)	X	
Zinc	SW-846 3050B/6010B EPA 6010 or 7951 (2)	X	X
Inorganics – Nutrients			
Oil & Grease	SW-846 9070	X	
Total Phosphorus	EPA 365.2/365.3 or USGS I-6600-85 (9.9)	X	X
Nitrate + Nitrite	LACHAT 12-107-04-1-B (0.25)	X	X
Ammonia-Nitrogen	LACHAT 12-107-06-1-A (0.16)	X	X
Total Kjeldahl Nitrogen		X	X
Organics			
Aldrin	SW-846 8081 EPA 8081, 354440B, 3541 (0.01)		
Chlordane	SW-846 8081 EPA 8081, 354440B, 3541 (0.009)	Х	
Dieldrin	SW-846 8081 EPA 8081, 354440B, 3541 (0.01)		
Endrin	SW-846 8081 EPA 8081, 354440B, 3541 (0.01)		
Heptachlor	SW-846 8081 EPA 8081, 354440B, 3541 (0.01)		
Lindane (Gamma BHC)	SW-846 8081 EPA 8081, 354440B, 3541 (0.01)		

¹ Suggested base parameter list reflects additions to NR347 Table 1, based on scientific research and experience with dredging projects.

	Suggested Analytical Method	Suggest Parameter	ed Base [•] Analyses ¹
Parameter	(Suggested Detection Level) (mg/kg, dry weight unless noted)	Great Lakes or Urban/ Industrial	Inland Waters (Rural/ Forested)
DDT	SW-846 8081 EPA 8081, 354440B, 3541 (0.01)	Х	
DDD & DDE	SW-846 8081 EPA 8081, 354440B, 3541 (0.01)	X	
Toxaphene	SW-846 8081 (0.01)		
PCBs (Total)	SW-846 8081 EPA 8081, 3540B, 3541 (0.04)	X Tied to Fish	Advisories
2,3,7,8-dioxin, 2,3,7,8-furan and 15 2,3,7,8-substituted dioxin and furan congeners	EPA 8290 (1 – 10 pg/g)		
Total Organic Carbon	SW 846 8081 SW846-EPA 9060 (0.2%)	X	X
Polycyclic Aromatic Hydrocarbons (PAHs)	EPA 8310	X	
Naphthalene	(0.019)		
Phenanthrene	(0.017)		
Pyrene	(0.012)		
Fluorene	(0.058)		
2-Methylnapthelene			
Acenapthene	(0.017)		
Acenaphthlyene	(0.021)		
Anthracene	(0.0071)		
Benzo (a) anthracene	(0.019)		
Benzo (a) pyrene	(0.023)		
Benzo (e) pyrene			
Benzo (b) fluoranthene	(0.032)		
Benzo (g,n,1) perylene	(0.022)		
Chrusope	(0.021)		
Dibenzo(a h)anthracene	(0.00/4)		
Eluoranthene	(0.008)		
Indeno (1 2 3-cd) pyrene	(0.029)		
Physical Tasts	(0.054)		
Particle Size Analysis – Sieve	ASTM D-422 (%)	X	X
and Hydrometer Analysis			
Moisture Content	ASTM D-2216 (%)	X	X
Atterburg Limits (Liquid Limit and Plastic Limit)	ASTM D4318 (as moisture content)		
Specific Gravity	ASTM D-854 (Ratio, unitless)		

Formerly Inter-Mountain Laboratories

Pace Analytical

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Date: 5/13/2021

CLIENT:	Pace Analytical Green Bay	CASE NARRATIVE
Project: Lab Order:	40226039 ECHO LAKE S2105012	Report ID: S2105012001

Samples S1, S2, S4 and S5 were received on May 3, 2021.

Samples were analyzed using the methods outlined in the following references:

U.S.E.P.A. 600/2-78-054 "Field and Laboratory Methods Applicable to Overburden and Mining Soils", 1978 American Society of Agronomy, Number 9, Part 2, 1982

USDA Handbook 60 "Diagnosis and Improvement of Saline and Alkali Soils", 1969

Wyoming Department of Environmental Quality, Land Quality Division, Guideline No. 1, 1984

New Mexico Overburden and Soils Inventory and Handling Guideline, March 1987

State of Utah, Division of Oil, Gas, and Mining: Guidelines for Management of Topsoil and Overburden for Underground and Surface Coal Mining, April 1988

Montana Department of State Lands, Reclamation Division: Soil, Overburden, and Regraded Spoil Guidelines, December 1994

State of Nevada Modified Sobek Procedure

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition

All Quality Control parameters met the acceptance criteria defined by EPA and Pace Analytical (Formerly Inter-Mountain Laboratories) except as indicated in this case narrative.

Reviewed by:

Se

Steve Kasa, Mining Lab Supervisor

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

Client: Pace Analytical Green Bay Project: 40226039 ECHO LAKE Project Number: S2105012 Sample Number: S2105012-001A Material Description: S1: silt Sample Date: 4/29/2021 Date Received: 5/3/2021 PL: NP USCS Classification: ML Grain Size Test Method: ASTM D 422 Tested By: Steve Holzerland Checked By: Brandon Sadler

LL: NV AASHTO Classification: A-4(0)

Test Date: 5/13/2021

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
520.30	0.00	3	0.00	0.00	100.0
		2	0.00	0.00	100.0
		1.5	0.00	0.00	100.0
		1	0.00	0.00	100.0
		0.5	0.00	0.00	100.0
		.375	0.00	0.00	100.0
		#4	0.00	0.00	100.0
		#10	0.00	0.00	100.0
62.49	0.00	#40	0.17	0.00	99.7
		#60	0.35	0.00	99.2
		#100	1.70	0.00	96.4
		#200	2.50	0.00	92.4
			Hydro	meter Test I	Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 92.4

Weight of hydrometer sample =62.49

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -3.5

Meniscus correction only = 0.0

Specific gravity of solids = 2.65

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	19.0	55.0	51.3	0.0138	55.0	7.3	0.0373	75.8
15.00	19.0	36.0	32.3	0.0138	36.0	10.4	0.0115	47.7
30.00	19.0	30.0	26.3	0.0138	30.0	11.4	0.0085	38.8
60.00	19.0	25.0	21.3	0.0138	25.0	12.2	0.0062	31.4
240.00	20.0	18.0	14.5	0.0136	18.0	13.3	0.0032	21.4
1440.00	19.0	13.0	9.3	0.0138	13.0	14.2	0.0014	13.7

Pace Analytical Services, Inc.

5/13/2021

				Fra	actional	Compo	nents					
		Grave	1			San	d				Fines	
Cobbles	Coarse	Fine	Tota	l Coa	rse Me	dium	Fine	•	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0) (0.3	7.3		7.6	65.0	27.4	92.4
		•		h				I		•	•	
De	Dio	D15	Dao	Dao	Dao	Deo		Deo	Deo	Пог	Doo	Дог
-5	- 10	0.0016	0.0028	0.0058	0.0089	0.012	25 0	0.0187	0.0436	0.0527	0.0653	0.0980
Fineness Modulus 0.04												
				Pace A	nalytica	al Serv	vices	, Inc.				

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

Client: Pace Analytical Green Bay Project: 40226039 ECHO LAKE Project Number: S2105012 Sample Number: S2105012-002A Material Description: S2: silt Sample Date: 4/29/2021 Date Received: 5/3/2021 PL: NP USCS Classification: ML Grain Size Test Method: ASTM D 422 Tested By: Steve Holzerland Checked By: Brandon Sadler

LL: NV AASHTO Classification: A-4(0)

Test Date: 5/13/2021

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
917.40	0.00	3	0.00	0.00	100.0
		2	0.00	0.00	100.0
		1.5	0.00	0.00	100.0
		1	0.00	0.00	100.0
		0.5	15.60	0.00	98.3
		.375	2.80	0.00	98.0
		#4	1.00	0.00	97.9
		#10	0.90	0.00	97.8
61.53	0.00	#40	0.99	0.00	96.2
		#60	1.00	0.00	94.6
		#100	2.02	0.00	91.4
		#200	2.32	0.00	87.7
			Hydro	meter Test I	Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 87.7

Weight of hydrometer sample =61.53

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -3.5

Meniscus correction only = 0.0

Specific gravity of solids = 2.65

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	19.0	53.0	49.3	0.0138	53.0	7.6	0.0381	70.2
15.00	19.0	33.0	29.3	0.0138	33.0	10.9	0.0118	41.7
30.00	19.0	27.0	23.3	0.0138	27.0	11.9	0.0087	33.2
60.00	19.0	22.0	18.3	0.0138	22.0	12.7	0.0064	26.0
240.00	20.0	15.5	12.0	0.0136	15.5	13.8	0.0033	17.1
1440.00	19.0	12.0	8.3	0.0138	12.0	14.3	0.0014	11.8

Pace Analytical Services, Inc. _____

5/13/2021

				Fra	ctional C	compone	nts				
0		Gravel				Sand				Fines	
Coddles	Coarse	Fine	Total	Coars	se Med	lium F	ine	Total	Silt	Clay	Total
0.0	0.6	1.5	2.1	0.1	1	.6	8.5	10.2	65.7	22.0	87.7
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0025	0.0043	0.0077	0.0111	0.0163	0.0253	0.0534	0.0650	0.0933	0.2690
ineness											
<u>Nodulus</u>											
0.20											

Pace Analytical Services, Inc.

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

Client: Pace Analytical Green Bay Project: 40226039 ECHO LAKE Project Number: S2105012 Sample Number: S2105012-003A Material Description: S4: silt Sample Date: 4/29/2021 Date Received: 5/3/2021 PL: NP **USCS Classification:** ML Grain Size Test Method: ASTM D 422 Tested By: Steve Holzerland Checked By: Brandon Sadler

LL: NV **AASHTO Classification:** A-4(0)

Test Date: 5/13/2021

					-
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
371.00	0.00	3	0.00	0.00	100.0
		2	0.00	0.00	100.0
		1.5	0.00	0.00	100.0
		1	0.00	0.00	100.0
		0.5	0.00	0.00	100.0
		.375	0.00	0.00	100.0
		#4	0.00	0.00	100.0
		#10	0.00	0.00	100.0
63.20	0.00	#40	0.13	0.00	99.8
		#60	0.16	0.00	99.5
		#100	0.29	0.00	99.1
		#200	1.87	0.00	96.1
			Hvdro	meter Test I	Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 96.1

Weight of hydrometer sample =63.2

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -3.5

Meniscus correction only = 0.0

Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: $L = 16.294964 - 0.164 \times Rm$

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	19.0	58.0	54.3	0.0138	58.0	6.8	0.0360	82.5
15.00	19.0	38.0	34.3	0.0138	38.0	10.1	0.0113	52.1
30.00	19.0	32.0	28.3	0.0138	32.0	11.0	0.0084	43.0
60.00	19.0	25.5	21.8	0.0138	25.5	12.1	0.0062	33.1
240.00	20.0	17.0	13.5	0.0136	17.0	13.5	0.0032	20.5
1440.00	19.0	13.0	9.3	0.0138	13.0	14.2	0.0014	14.1

Pace Analytical Services, Inc. _____

5/13/2021

Coarse Fine Total Coarse Medium Fine Total Sitt Clay Total 0.0 0.0 0.0 0.0 0.0 0.2 3.7 3.9 68.6 27.5 96.1 D5 D10 D15 D20 D30 D40 D50 D60 D80 D85 D90 D85 0.0016 0.0031 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068 meness 0.01 0.0031 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068 0.01 0.0016 0.0031 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068 0.01 0.01 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068	Fractional Components												
Obbies Coarse Fine Total Coarse Medium Fine Total Silt Clay Total 0.0 0.0 0.0 0.0 0.2 3.7 3.9 68.6 27.5 96.1 D5 D10 D15 D20 D30 D40 D50 D60 D80 D85 D90 D95 0.0016 0.0031 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068 neress 0.011 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068			Gravel				Sand			Fines			
0.0 0.0 0.0 0.2 3.7 3.9 68.6 27.5 96.1 D5 D10 D15 D20 D30 D40 D50 D60 D80 D85 D90 D85 0.0 0.0016 0.0031 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068	Coarse Fine Total				l Coar	rse Med	lium F	Total	Silt Clay To				
Ds D10 D15 D20 D30 D40 D50 D60 D80 D85 D90 D95 0.0016 0.0031 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068 reneess 0.01 0.0031 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068 0.01	0.0	0.0	0.0	0.0	0.0) 0	.2 .	3.7	3.9	68.6	27.5	96.1	
D1 D10 D10 D20 D30 D40 D50 D60 D80 D85 D90 D95 0.0016 0.0016 0.0031 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068 nenesse datus 0.011 0.0056 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068 nenesse datus 0.011 0.0165 0.0077 0.0105 0.0150 0.0324 0.0401 0.0507 0.068							I	1					
neness odulus 0.01	D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅	
neness J.J.			0.0016	0.0031	0.0056	0.0077	0.0105	0.0150	0.0324	0.0401	0.0507	0.068	
	ineness												
	<u>Aodulus</u>												
	0.01												

_____ Pace Analytical Services, Inc. _____

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

Client: Pace Analytical Green Bay Project: 40226039 ECHO LAKE Project Number: S2105012 Sample Number: S2105012-004A Material Description: S5: silt Sample Date: 4/29/2021 Date Received: 5/3/2021 PL: NP **USCS Classification:** ML Grain Size Test Method: ASTM D 422 Tested By: Steve Holzerland Checked By: Brandon Sadler

LL: NV **AASHTO Classification:** A-4(0)

Test Date: 5/13/2021

					•
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
570.30	0.00	3	0.00	0.00	100.0
		2	0.00	0.00	100.0
		1.5	0.00	0.00	100.0
		1	0.00	0.00	100.0
		0.5	0.00	0.00	100.0
		.375	0.00	0.00	100.0
		#4	0.00	0.00	100.0
		#10	0.40	0.00	99.9
61.10	0.00	#40	0.33	0.00	99.4
		#60	0.39	0.00	98.8
		#100	0.70	0.00	97.6
		#200	4.82	0.00	89.7
			Hydro	meter Test l	Data

Hydrometer test uses material passing #200

Percent passing #200 based upon complete sample = 89.7

Weight of hydrometer sample =61.1

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -3.5

Meniscus correction only = 0.0Specific gravity of solids = 2.65

Hydrometer type = 152H

Hydrometer effective depth equation: $L = 16.294964 - 0.164 \times Rm$

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	19.0	50.0	46.3	0.0138	50.0	8.1	0.0393	67.9
15.00	19.0	24.0	20.3	0.0138	24.0	12.4	0.0125	29.7
30.00	19.0	19.0	15.3	0.0138	19.0	13.2	0.0092	22.4
60.00	19.0	16.0	12.3	0.0138	16.0	13.7	0.0066	18.0
240.00	20.0	11.0	7.5	0.0136	11.0	14.5	0.0034	11.0
1440.00	19.0	9.0	5.3	0.0138	9.0	14.8	0.0014	7.7

Pace Analytical Services, Inc. _____

5/13/2021

Cobbles		Grave	I			San	d				Fines	
Copples	Coarse	Fine	Tota	I Coa	rse Med	dium	Fine	То	otal	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	1 0	.5	9.7	10).3	74.9	14.8	89.7
D -	Dia	D	Dee	Dee	Dec	D	Der		Dee	Dee	Dee	Dar
D5	D10	D15	D ₂₀	D30	D40	D50	D60)	D80	D85	D90	D95
	0.0029	0.0051	0.0078	0.0127	0.0178	0.024	0 0.03	18	0.0543	0.0632	0.0759	0.1022
Fineness Modulus	c _u	Cc										
0.04	10.93	1.73										

Pace Analytical Services, Inc. _____

Inter	nal Transfei	r Chain	of Custoc	 ∧						C
			Sample	s Pre-Logged	into eCOC.	State	e Of Origin: WI Needed:	X	Page 1	ICE Analytical [®] www.pacelabs.com
Workor	der: 40226039	Workorder N	Vame: ECHO	LAKE		Own	er Received Date:	4/30/2021	Results Requested	By: 5/14/2021
Report Ic			Subcontra	ct To				Requested	d Analysis	
Dan Mile Pace Ans 1241 Bel Suite 9 Green Bs Phone (9	wsky alytical Green Bay levue Street ay, WI 54302 20)469-2436		Pace 1673 Sheri Phon	Analytical Sheri Terra Avenue dan, WY 82801 e (307)672-8945	dan WY		ieve & Hydrometer			
						Preserved Cor	itainers s			
Item Sam	ple ID	Sample Type	Collect Date/Time	Lab ID	Matrix		►0 MT2A			I AB LISE ONLY
1 S1		PS	4/29/2021 13:00	40226039001	Solid 1	T	×			Salosoia
2 S2		PS	4/29/2021 13:00	40226039002	Solid 1		×			
3 S4		PS	4/29/2021 13:00	40226039004	Solid 1		×			
4 S5		PS	4/29/2021 13:00	40226039005	Solid 1		×			
5										
									Comments	
Transfers	Released By		Date/Time	Received B	X		Date/Time			
1	MMM		11 11/2/11	du	The second		5/3/21			
2	-									
3										
Cooler 1	Temperature on Re	sceipt	°C Cui	stody Seal Y	or N	Rec	eived on Ice Y o	Z	Samples Intact	Y or N
***In orde	sr to maintain client	confidentiality	v. location/name	et the sampli	na site, sam	ipler's name ;	and signature may n	ot he provided	d on this COC docume	nt
This c	hain of custody is c	considered con	mplete as is sin	ce this informa	tion is avail	able in the ov	wher laboratory.			

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

Summary of Soil Analytical Results Echo Lake Pre-Dredging Study

				Samples								
		1	2	3	4	5	6					
		Lake Bed	Sediment	Sediment	Lake Bed	Sediment	Sediment					
	4/29/21	4/29/21 4/29/21 4/29/21										
	Soil Type Silt Silt n/a Silt Silt n/a								NR 720 WDNR Spreadsheet RCLs			
Parameter	CAS							Non-industrial Direct Contact	Industrial Direct Contact	Protection of Ground Water	Back Ground Threshold Value	
					Metals							
Arsenic	7440-38-2	6.5	7.0		55	8.0		0.677	3	0 584	8	
Barium	7440-39-3	134	97.0		134	109		15 300	100,000	164.8	364	
Cadmium	7440-43-9	12.1	13.1		0.58.1	0.48.1		71.1	985	0.752	1	
Chromium	7440-47-3	24.8	51 1		23.7	26.9		100 000	100 000	360,000	44	
Copper	7440-50-8	15.8	15.1		16.5	16.1		3 130	46 700	92	35	
Lead	7439-92-1	18.7	18.1		24.3	26.9		400	800	27	52	
Manganese	7439-96-5	744	477		654	473		1 830			2 937	
Mercury	7439-97-6	0 17	0.18		0.21	0.19		3 13	3 13	0.208	2,007	
Nickel	91-20-3	16.9	56.6		16.6	27.5		1 550	22 500	13.061	31	
Selenium	7782-49-2	37	31		29	27		391	5 840	0.52		
Zinc	7440-66-6	74.7	63.5		79.6	76.0		23 500	100.000	0.02	150	
200	1440 00 0	14.1	00.0		Nutrient	70.0		20,000	100,000	1	100	
					Nutrient	s						
Phosphorus	7723-14-0	965	1330	1710	738	803	873					
Nitrogen, Ammonia	/664-41-/	293	621		468	264						
Nitrogen, Kjeldahl, Total	//2/-3/-9	4380	5090		4360	4000						
Mean Total Organic Carbon	7440-44-0	46900	66200		52400	46300						
Total Organic Carbon	7440-44-0	48000	78200		55300	47400						
				Polychl	orinated Bipl	henyls (PCBs	5)					
PCB. Total	1336-36-3	<0.0319	< 0.0400		< 0.0304	< 0.0309						
PCB-1016 (Aroclor 1016)	12674-11-2	<0.0319	< 0.0400		< 0.0304	< 0.0309		4.11	51.30			
PCB-1221 (Aroclor 1221)	11104-28-2	<0.0319	< 0.0400		< 0.0304	< 0.0309						
PCB-1232 (Aroclor 1232)	11141-16-5	<0.0319	< 0.0400		< 0.0304	< 0.0309						
PCB-1242 (Aroclor 1242)	53469-21-9	<0.0319	< 0.0400		< 0.0304	< 0.0309						
PCB-1248 (Aroclor 1248)	12672-29-6	<0.0319	< 0.0400		< 0.0304	< 0.0309						
PCB-1254 (Aroclor 1254)	11097-69-1	<0.0319	< 0.0400		< 0.0304	< 0.0309		1.17	14.70			
PCB-1260 (Aroclor 1260)	11096-82-5	<0.0319	< 0.0400		< 0.0304	< 0.0309						
	Polycyclic Aromatic Hydrocarbons		AHs)									
1 Mothylpaphthalopo	00 12 0	<0.0051	<0.0064		0.0243		,	1 180	52 700			
	90-12-0	<0.0031	<0.0004		0.0243 J	<0.0030		4,180	32,700			
Acenaphinene	03-32-9	<0.0045	<0.0057		<0.0043	< 0.0044		3,390	45,200			
Acenaphinylene	120-90-0	<0.0044	0.0000		0.000000	<u> </u>		17 000	100.000	106 04015		
Renzo(a)anthracona	56-55 3	<0.0043	0.02413		0.0050 J	0.0350		1 1/	20.9	130.34313		
	50 33 9	<0.0040	0.0202 J		0.000000	0.0500		0.115	20.0	0.47		
Benzo(b)fluoranthono	205-00-2	<0.0049	0.02303		0.0105.5	0.0258 1		1 15	2.11	0.47		
Benzo(a h i)perulono	101-24-2		0.01433			0.02303		1.10	<u> </u>	0.4700070		
Benzo(k)fluoranthono	207-08-0	<0.0001	0.01233		0.0045	0.02040		11.5	211			
Chrysene	218-01-0	<0.0045	0.0248.1		0.0095.1	0.0402		115	2110	0 1442231		
Dibenz(a h)anthracono	53-70-3	<0.0000			<0.00000	0.0774 1		0 115	2110			
Fluoranthene	206-44-0	<0.0040	0.0548		0.0282	0.00740		2,300	30 100	88 877805		
Fluoropo	86-73-7		<0.0040		0.02023	<0.0003		2,000	30,100	14 820032		
Indeno(1.2.3-cd)pyrepe	103-30-5		0.0115.1		<0.0070	0.0220.1		1 15	21.1			
Nanhthalene	91-20-3	<0.0070	<0.0043		0.0232 1	<0.02200		5 52	21.1	0.6581818		
Phenanthrapa	85-01-8	<0.0034	0.0328 1		0.02020	0.0386		0.02	<u>2</u> 7.1	0.0001010		
Duropo	129-00-0	<0.0040	0.03203		0.0242.0	0.0607		1 700	22 600	54 545455		
i yiene	120-00-0	-0.0001	Cumulat	ivo Bick Col	ulation (No.		iroct Contos	+)	22,000	07.040400		
			Cumulai	ive RISK Cal		i-muustrial L	meet Contac	-y				
	Exceedances	0	0		0	0		1	1			
	Hazard Index	0.0724	0.1193		0.0546	0.0550		1	1			
	Cancer Risk	1.1E-06	1.5E-06		1.1E-06	1.1E-04		1.00E-05	1.00E-05			

 Cancer Risk
 1.1E-06
 1.5E-06
 -- 1.1E-06

 Notes:
 Samples 3 and 6 only analyzed for Phosphorus

 J = Estimated concrentration at or above the Limit of Detection and below the Limit of Quantification

 < = less than detection limit (analyte not detected)</td>

 Groundwater RCL exceedances are in *Italic red* font

 Non-Industrial Direct Contact RCL exceedances are in **bold red** font

 Industrial RCL exceedances are boxed.

Phosphorus Load Estimate

May-21

Project: Client: Location: Project No.:	Echo Lake Pre-Dredging Study City of Burlington Racine County, WI 26-1258.00										
References:	1.) Earth Manual. US Department of	Inter	ior. Third Edition. 1998.								
Dredge volume estimate	115,231 cy (a	avera	age of 33/200kHz sedimer	nt surfa	ces)						
Avg sediment density	2,018 kg/m ³ (a	2,018 kg/m 3 (average value from "Earth Manual" correlating to testing results)									
Phosphorus in sediment	1,281 mg/kg (a	age of 3 sediment samples	s withir	dredge area (not lake bed samples))							
	115,231 cy	х	0.764554858 m ³ /cy	=	88,100.42 m ³						
Phosphorus Load	88,100.42 m ³	х	2,018 kg/m ³	=	177,786,649.26 kg						
Estimate Calculation	177,786,649.26 kg	х	1,281 mg/kg	=	227,744,697,701.49 mg						
	227,744,697,701.49 mg	x	0.000002204 lb/mg	=	501,949.31 lb of phosphorus in sediment						

Conversions

1 cy = 0.764554858 m3/cy

1 mg = 0.000002204 mg/lbs